

Reg.					
No.					

DEPARTMENT OF SCIENCES, III SEMESTER M.Sc (Physics) END SEMESTER EXAMINATIONS, NOVEMBER 2019

SUBJECT: LASERS AND OPTICAL FIBERS [PHY 5002] (REVISED CREDIT SYSTEM-2017)

	Time: 3 Hours MAX. MARKS: 50	
	Note: (i) Answer ALL questions	
	(ii) Missing data may be assumed suitably	
1A.	Obtain the expressions for Einstein coefficients and hence obtain the ratio of the	
	number of spontaneous to stimulated emission under thermal equilibrium.	[5]
1B.	Show that population inversion is essential for light amplification.	[3]
1C.	Estimate the wavelength at which stimulated emission rate becomes $1/10^{th}$ of	
	spontaneous emission rate at room temperature (300 K).	[2]
2A.	What is Q switching? Write the importance of Q-switching and explain any two	
	techniques for Q-switching.	[5]
2B.	Given: $a = b = 1$ cm, $d = 8$ cm. Estimate θ_{x} , θ_{y} and θ_{z} for the mode defined by $m =$	
	0, $n = 1$, $q = 10^6$.	

[3]

2C.	Consider a typical cavity of a He – Ne laser (λ_0 = 632.8 nm) with following	
	specifications. Cavity length d = 20 cm, $n_0 = 1$, reflectivity $R_1 = 1$ and $R_2 = 0.98$,	
	$\alpha_1 = 0$. Estimate the quality factor.	[2]
3A.	With relevant diagram and equations, explain the continuum radiation mode in leaky	
	planar structure.	[5]
3B.	With necessary diagrams, explain the working of He - Ne laser.	[3]
3C.	The multimode fiber with core r.i. 1.500, relative r.i. difference 3% is operated at	
	$0.82\mu\text{m}.$ Estimate the critical radius of curvature at which large bending loss occurs.	[2]
4A.	Do the modal analysis of TE modes of a symmetric step index planar wave guide.	[5]
4B.	An optical fiber has $n_1 = 1.50$ with core diameter 3 μ m. Estimate the range of r.i	
	allowed for cladding if it has to support 3 modes ($\lambda_0 = 0.85 \ \mu m$)	[3]
4C.	Write a note on laser safety.	[2]
5A.	Explain the fabrication of Fiber Bragg Grating (FBG). How an FBG can be used as	
	temperature sensor?	[5]
5B.	What is the maximum rate (frequency) at which the information can be sent along a	
	10 km fiber of core r. i. 1.48 and $(n_1 - n_2)/n_1 = 0.01$.	[3]
5C.	Explain the working of Erbium Doped Fiber Amplifier (EDFA).	[2]
