
M.TECH. End semester – Regular

SUBJECT: ADVANCED BIOSEPARATION PROCESSES [BIO 5124]

Date of Exam: 23/11/2019 Time of Exam: 2.00 PM to 5.00 PM Max. Marks: 50

Instructions to Candidates:

❖ Answer ALL the questions & missing data may be suitable assumed

2B	The following data was obtained from a constant pressure cake filtration experiment:					4
	Time (s)	5	10	20	30	
	V (t) (litres)	0.040	0.055	0.080	0.095	
	The following additional information is given: $A = 0.1$ ft2, $\rho_c = 0.015$ kg/ 1, $\mu = 1.1$ centipoise, $\triangle P = 10 \text{ N/m}^2$. a) Determine R_m b) Determine the specific cake resistance					4
2C	What would happen, if a protein sample of a single component is applied to a chromatography system in a small volume? Can we expect it to be eluted in a very sharp peak of similar volume?					
3A	Aqueous two-phase extraction is used to extract xylanase from a solution. A PEG-dextran system is used for the same. The partition coefficient is 6. Calculate the maximum possible enzyme recovery when the volume ratio of upper to lower phase is 4.					2
3B	What are the advantages and disadvantages of Aqueous two phase extraction process					3
3C	Outline the design criteria for high-value low volume products. (Each step 0.5 mark)					5
4A	In an experiment 43 L/hr of streptomycin extract is to be stripped with water at pH 6. The value of K is 0.11. We want to use three stages and have 95% recovery. How much water should we use?					4
4B	100 litres of an aqueous solution of citric acid (concentration = 1 g/1) is contacted with 10 litres of an organic solvent. The equilibrium relationship is given by $C_E = 100 C_R^2$, where C_R and C_E are the citric acid concentrations in the raffinate and extract respectively and are expressed in g/1. Calculate:					6
	a) The concentration of citric acid in the raffinate and the extract.					
	b) The fraction of citric acid extracted.					
	If the extract thus obtained is then contacted with a further 100 litres of aqueous solution of citric acid (concentration = 1 g/1) calculate:					
	c) The concentration of citric acid in the raffinate and extract phases of the second extraction. Comment on these results.					
5A	Briefly explain the steps involved in reverse Micellar Extraction process					3
5B	The intrinsic and apparent rejection coefficients for a solute in an ultrafiltration process were found to be 0.95 and 0.63 respectively at a permeate flux value of 6 x 10 ⁻³ cm/s. What is the solute mass transfer coefficient?					2
5C	Cell free fermentation liquor contains 8x10 ⁻⁵ moll ⁻¹ immunoglobulin G. It is proposed to recover at least 90% of this antibody by adsorption on					5

synthetic, non-polar resin. Experimental equilibrium data are correlated as follows: $C_{AS}^* = 5.5 \times 10^{-5} (C_A^*)^{0.35}$

where C^*_{AS} is mol solute adsorbed per cm³ adsorbent and C^*_{A} is liquid phase solute concentration in mol/ L. What minimum quantity of resin to treat $2m^3$ fermentation liquor in a single stage mixed tank?