

V SEMESTER B.TECH. END SEMESTER EXAMINATIONS NOV/DEC 2019 SUBJECT: SEPARATION TECHNIQUES IN BIOPROCESSING [BIO3103] Date of Exam: 20/11/2019 Time of Exam: 2.00 PM – 5.00 PM Max. Marks: 50

Instructions to Candidates:

✤ Answer ALL the questions & missing data may be suitable assumed

1A.	Equilibrium partial pressure (PP) of CO ₂ over aqueous solutions of Monoethanolamine (MEA, 30wt%) at 25^{0} C/1.2 atm pressure, MoleCO ₂ /Mole solution 0 0.058 0.060 0.062 0.064 0.066 0.068 0.070 PP, mm Hg 0 5.6 12.8 29 56 98.7 155 232 A process plant produces a gas containing 15% mole CO ₂ (rest inerts). The gas is to be cleaned in a scrubber with 4 trays. Scrubbing liquid (MEA, 30 wt %) is a recycled solvent contains 0.058 mole CO ₂ /mole solution. Column pressure is 1.2 atm (25 ⁰ C). For every m ³ of entering gas at the above conditions, determine solvent flow rate to reduce CO ₂ content to 1.5% mole. Mol wt of MEA =61	6
1B.	i. Define and explain Resolution in Chromatographyii. How does selectivity, capacity and efficiency affect resolution	2 2
2A.	A binary distillation column is operating under conditions specified: Feed rate= 350 kmole per hour, Overhead product rate=150 kmole/h, mole fraction of the overhead product=0.97 and that of bottom product= 0.02, Reflux ratio=3.5. In the stripping section it was found that mole fraction of the vapour phase leaving a particular plate is 0.33 while mole fraction of the liquid entering the same plate is 0.25. Determine q and number of trays. $ \frac{x 0.1 0.2 0.4 0.6 0.8}{y 0.2 0.4 0.7 0.8 0.9} $	6
2B.	y0.20.40.70.80.9Describe,i.Ion Exchange Chromatographyii.Principles of Size Exclusion Chromatography and factors	4
3A.	Equilibrium relationship for adsorption of Phenol by Carbon is given by $q=1.3$ *C, where $q=$ amount of phenol adsorbed in mg Phenol per gram of Carbon, C= concentration of Phenol in mg per kg of water in solution. It is desired to treat 1 litre of a solution with phenol concentration of 200mg/kg water in 2 stage countercurrent treatment as sketched below. Feed Carbon is pure (10 g) and assume that 1 litre of solution contains 1 kg water. Determine final solution concentration (C ₁) in mg-Phenol/kg-water. Assume basis as one hour of operation, and that 1 litre solution =1 kg water, no need to use graph	6

