Reg. No.

V SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2019

LINEAR CONTROL THEORY [ELE 3101]

REVISED CREDIT SYSTEM

	REVISED CREDIT SYSTEM	
Time	: 3 Hours Date: 14 th November 2019 Max.	Marks: 50
Instructions to Candidates:		
	 Answer ALL the questions. Missing data may be switchly assumed. 	
	 Missing data may be suitably assumed. Semi-log graph sheet may be provided. 	
	• Semi-log graph sheet may be provided.	
1A.	For the mechanical system shown in Fig. Q1A :	
	(i) Write down the dynamic equations that describe the system.	
	(ii) Obtain transfer function $X_3(s)/F(s)$ considering $M_1 = M_2 = M_3$	= (03)
	1kg; $B_1 = B_2 = 1 N - s/m$; $K_1 = K_2 = K_3 = K_4 = 1 N/m$	
1B.	For the system shown in Fig. Q1B , determine the transfer function $\frac{Y(s)}{R(s)}$ using	ıg
	Mason's gain formula	(03)
1C.	Assuming positive value for the gain "K", sketch the root locus and comment on the	ie
	stability of the system whose transfer function is given as: K(z + 2)(z + 2)	
	$G(s)H(s) = \frac{K(s+2)(s+3)}{s(s+1)}$	
	Further, determine the values of "K" for which the system will be	
	(i) Underdamped	
	(ii) Overdamped.	(04)
2A.	The magnitude of the frequency response of an underdamped second order syste	n
	$(T(s))$ is 5 at 0 rad/sec and it peaks to $\frac{10}{\sqrt{3}}$ at $5\sqrt{2}$ rad/sec. Through detailed	
	analyses, derive the transfer function $T(s)$:	
	-	
	$T(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$	(03)
2B.		
20.	The asymptotic bode plot of the transfer function $K/(1 + a^{-1}s)$ is given in Fig. Q2	
	Obtain analytically, the errors in phase angle as well as in the gain (dB) at frequency of $\omega = 0.5a$.	a (03)
2C.	The asymptotic Bode plot of a unity feedback system whose open-loop transf	
20.	function G(s) is shown in Fig. Q2C . With detailed analyses, derive the transfe	
	function G(s).	(04)
3A.	A unity feedback system has the open loop transfer function is given below:	
	$G(s) = \frac{K(s+6)}{s(s+1)(s+4)}$	
	$G(s) = \frac{1}{s(s+1)(s+4)}$	
	Draw the Nyquist diagram and determine the range of K for which the system	.
	remains stable.	(03)
	o	D 1 (0

3B. The forward path model of a system cascaded with a proportional controller configured in unity feedback control loop is given as:

$$G(s) = \frac{K(s+4)}{s(s+1.2)(s+2)}$$

Determine:

- (i) The range of gain "*K*" that keeps the system stable.
- (ii) The value of gain "*K*" that makes the system oscillate
- (iii) The frequency of oscillation when *K* is set to that value which makes the system oscillate
- **3C.** A unity feedback system has an open loop transfer function given by the following expression is operating with a dominant pole damping ratio of 0.707

$$Gp(s) = \frac{K(s+6)}{(s+2)(s+3)(s+5)}$$

Design a suitable PD controller so as to reduce the settling time by a factor of 2. Also comment on the transient as well as steady state performance of the system with and without the controller.

4A. Justify appropriately whether, the transfer function $G_c(s) = \frac{(s+5)}{(s+10)}$ can indeed function as a lead compensator. Further, determine the frequency at which the phase of $G_c(s)$ is maximum.

- **4B.** With a neat diagram, derive the mathematical model of a lag compensator using an operational amplifier. Justify its phase lag nature from resultant phase equation.
- **4C.** Consider a unity negative feedback system with a plant transfer function as:

$$G_{plant}(s) = \frac{K}{s(s+5)(s+10)}$$

The gain "*K*" is set to 100 so as to achieve a static error constant of $2 s^{-1}$. Prove through appropriate frequency domain analysis that introduction of a lead-lag compensator in the forward path of the system whose transfer function is given by:

$$G_{comp}(s) = \frac{(s+0.15)(s+0.7)}{(s+0.015)(s+7)}$$

results in the overall gain and phase margins of 28.6 dB and 75.4^o respectively. **(Use the semi-log graph sheet)**

- **5A.** A control system with a PI controller is shown in **Fig Q5A**. Select the appropriate controller gains so that the overshoot to a unit step input is equal to 5% and the error constant 5 s^{-1} .
- **5B.** Represent the electrical network shown in **Fig. Q 5B**, in state space physical variable form if the output is current through the resistor. Convert the state space to represent the same electrical network in transfer function form.
- **5C.** For the system shown below, design a state feedback controller such that the compensated system has an overshoot of 10% and settling time of 3secs. Further design an observer which is ten times faster than the designed controller.

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$
(04)

(04)

(03)

(03)

(04)

(03)

(03)

(03)

