MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

FIFTH SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER DEGREE EXAMINATIONS, DECEMBER - 2019

SUBJECT: PROCESS INSTRUMENTATION AND CONTROL [ICE 3106]

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates : Answer ALL questions and missing data may be suitably assumed.

- 1A. Explain the need of Process control in chemical industries, with a suitable example.
- 1B. Derive the mathematical model of a single tank system which involves nonlinear valve at the outlet.
- 1C. Find the transfer function $h(s)/F_{in}(s)$ for a system shown in Fig.1C. Where F_1 and F_2 are outlets from the tank.

(2+5+3)

(2+3+5)

- 2A List the advantages and limitations of P+I controller with respect to the first order process.
- 2B Prove that proportional controller will result with offset for servo and regulatory operation on the first order process.
- 2C The error shown in Fig. 2C is applied to a proportional-integral controller with $K_P = 3$, $K_I = 1.5$ sec⁻¹, $K_D = 0.8$ sec and P(0) = 10%. Draw a graph of the resulting controller output and also calculate controller output for every time instants.
- 3A Define integral windup action in controller.
- 3B With a neat sketch analyse the feed forward feedback control loops with necessary equations.
- 3C The transfer functions of a cascade systems are given as $G_{p1}(s) = \frac{4}{(2s+1)(4s+1)}; G_{p2}(s) = \frac{5}{(s+1)}; G_{l2}(s) = \frac{1}{(3s+1)}$ G_{c1} is a proportional controller; G_{c2}=3;

 G_{m1} =0.2 and G_{m2} =0.05. Calculate the ultimate value of K_{p1} for primary controller for which simple feedback and cascade loop going to oscillations.

(2+3+5)

- 4A Write the need for two degree of freedom in control loops.
- 4B Design an electronic PID controller using Op-Amp, input error given in the range is 0-4V. The output to final control element is 0-8V. Given $K_p=2.4\%/\%$, $K_i=9(\%/min)/\%$, $K_d=0.7$ %/(%/min).
- 4C Derive the conditions for pairing of inputs and outputs of a MIMO system for the controller design with minimum interaction.
- 5A Draw two configurations of the ratio controller.
- 5B Design the IMC based PI controller for a first order process. Derive the controller parameters for the K_p and K_i.
- 5C Explain the control of overhead composition of a distillation column with necessary diagrams.

(2+3+5)

(2+3+5)
