

MANIPAL

(A constituent unit of MAHE, Manipal)

# V SEMESTER B. TECH (MECHANICAL/IP ENGG.) END SEMESTER EXAMINATIONS, NOVEMBER 2019

## SUBJECT: THEORY OF INTERNAL COMBUSTION ENGINES AND

### EMISSIONS [MME 4036]

### **REVISED CREDIT SYSTEM**

Time: 3 Hours

MAX. MARKS: 50

(2)

#### Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- 1A. State the assumptions made for air standard cycles.
- 1B. With a neat sketch explain the effect of specific heat ( $\gamma$ ) on the power output (2) of a fuel-air cycle.
- 1C. Calculate the stoichiometric air-fuel ratio for the combustion of a sample of (6) dry anthracite of the following composition by mass:

C=90%;  $H_2 = 3\%$ ;  $N_2 = 1\%$ ; Sulphur=0.5%; ash=3%.

If 20% excess air is supplied, determine:

(i) Air-fuel ratio

(ii) Wet analysis of the products of combustion by volume.

- 2A. How solid fuels can be adopted to IC engine applications? Explain the (3) conversion routes.
- 2B. What is pour point? What is the significant of this property on engine (3) combustion?
- 2C. Explain with a neat diagram explain fractional distillation. Mention its (4) limitations.
- 3A. With suitable sketch describe the various stages of SI engine combustion. (3)
- 3B. Explain the role of air swirl in CI engine combustion. (3)
- 3C. Explain the following with neat sketch
  - (i) Open combustion chamber (ii) Pre-combustion chamber

(4)

| 4A. | Explain the factors affecting combustion in a dual fuel engine.                                        | (4) |
|-----|--------------------------------------------------------------------------------------------------------|-----|
| 4B. | What is the role of pilot injection in CRDI engines?                                                   | (3) |
| 4C. | List the basic technical features of GDI engine. Also mention the major characteristics of GDI engine. | (3) |
| 5A. | Why SI engine has higher CO and HC emissions than CI engines? Explain.                                 | (3) |
| 5B. | Explain the factors affecting the formation of CO.                                                     | (3) |
| 5C. | Explain exhaust gas recirculation technique? What are the drawbacks of this technique?                 | (4) |