Reg. No.							
----------	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

V SEMESTER B.TECH. (MECHATRONICS ENGINEERING)

SUBJECT: DIGITAL SIGNAL PROCESSING [MTE 3105]

(--/--)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Data not provided may be suitably assumed

1A.	Calculate the order of a Low Pass IIR filter with 3 dB frequency = 1000π and stopband frequency = 2000π . User requirement for attenuation in stopband is ≥ 40 dB. Further, discuss the reason, why do we over satisfy the stop band frequency, and not pass band frequency.	(4)	CO3
1B.	Determine the value of α for the following situation: Signal x ₁ [n] and x ₂ [n] has same energy. Suppose $x_1[n] = \alpha \ 0.5^n \ u[n]$ where α is a real positive number. Assume $x_2[n] = \begin{cases} \sqrt{1.5} \ ; n = 0,1; \\ 0 \ ; 0 \ therwise \end{cases}$	(3)	CO1
1C.	Compute the 4- point DFT of the sequence $x(n) = \{1,2,3,0\}$ using DIF-FFT algorithm.	(3)	CO2
2A	Classify the following signals as periodic or aperiodic. If periodic, find its periodicity. (i) $x(t) = 2\cos(5t + 1) - \sin(4t)$ (ii) $x[n] = 3\cos(4\pi n) + 2\sin(\pi n)$	(4)	CO1
2B	Compute the system function $H(z) = \frac{Y(z)}{X(z)}$ for a causal LTI system, which is described by the difference equation $y[n] = y[n-1] + y[n-2] + x[n-1]$, and plot pole zero location on z plane.	(2)	CO2
2 0	Determine the $h[n]$ from the given z-transform $H(z) = \frac{1+2z^{-1}-5z^{-2}+6z^{-3}}{1-3z^{-1}+2z^{-2}}$, ROC: $ z > 2$.	(4)	CO2
3A	Explain the following terms of digital signal processor: (i) Parallel logic unit (PLU), and (ii) Auxiliary register arithmetic unit (ARAU).	(3)	CO4

38	State and justify the type of FIR (finite impulse response) filter shown in the Fig. 3B . $x_{[n]} \xrightarrow{t_{[n]}} \xrightarrow{t_{[n]}$	(3)	CO3
3C	Calculate the region of convergence of the z-transform of the sequence: $\left(\frac{5}{6}\right)^n u[n] - \left(\frac{6}{5}\right)^n u[-n-1].$	(4)	CO2
4 A	Design a FIR low pass filter using Hanning window with 11 coefficients for the following specifications: Passband edge frequency =0.25 kHz and Sampling frequency = 1 kHz.	(8)	CO3
4 B	Compare the fixed-point and 32-bit floating point digital signal processor in terms of (i) accuracy, and (ii) cost vs ease of use.	(2)	CO4
5A	Design a high pass digital IIR filter using Butterworth approximation and bilinear transformation to meet the following specifications: Stopband ripple $\leq 15 dB$, Passband edge =150 Hz, Passband attenuation > 1 dB , Stopband edge =100 Hz, and sampling frequency = 1 KHz	(7)	CO3
5B	Develop a Direct form-I realization of the following difference equation: y(n) = 2x(n) + 8x(n-1) + 5x(n-2) + 7x(n-3) - 3y(n-1) - 4y(n-2) - 2y(n-3)	(3)	CO3