Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

V SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, DEC 2019

SUBJECT: FPGA Based Digital System Design [MTE 4014]

(01/01/2020)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Data not provided may be suitably assumed
- ✤ Graph sheets will be provided
- Discuss the structure of Verilog module and write a Verilog code for 4-bit adder 03 CO1 module.
- **1B.** Develop a verilog program for the Boolean function f=maxterms{2,3,4} using **04 CO1**
 - a) Gate level structural modelling.
 - b) Data flow modelling
 - c) Behavioural Modelling
- 1C. Write a Verilog module for 4:1 MUX using case statements.03CO1
- **2A.** Realize the boolean function $f=maxterms\{0,2,3,4,5\}$ using PROM and PLA. **03** CO2
- **2B.** Describe the internal structure of XC9500 family.
- 2C. Discuss how an FPGA structure can be used to develop combinational logic of 03 CO3, function f=maxterms{1,2,3,4,5,6,7,8,9,10,11,12,13,14}.
 CO4
- **3A.** Explain stuck at faults and identify the total number of stuck at faults possible for **03 CO4** the logic shown in Fig. 3a

- **3B.** Summarize the internal structure of ALTERA APEX 20K FPGA. **04 CO3**
- **3C.** Describe the Built in Test Architecture and its necessity in Digital System Design. **03 CO4**
- 4A. Write a Verilog HDL program for synchronous RAM module with size of 32 word 04 CO1 lines and each word with byte size.

04

CO2

4B.	State the design flow steps of FPGA and write a simulation testbench for 1:4 DeMux.	04	CO1, CO3
4C.	Write a Verilog task for RPM to rps speed conversion.		CO1
5A.	Discuss on fault testing of sequential circuits.	03	CO4
5B.	B. A synchronous signal function generator with single output is to be designed and developed with FPGA technology having 50MHz rate which meets the following specifications:		CO4

- Generates a triangular waveform with 50KHz period.
- Generates a sawtooth ramp waveform with 0.1MHz period.
- Generates a square pulse with ON for 5µsec and OFF for 5µsec.
- The function generator has a waveform selector and also is provided for reset option of the function generator waveform.

With neat waveforms of function generator develop a Verilog code for this case study of digital function generator application.