Reg. No.



MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

## VII SEMESTER B.TECH. (AUTOMOBILE ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2019

SUBJECT: ENGINE TRIBOLOGY [AAE 4019]

## REVISED CREDIT SYSTEM (28/11/2019)

Time: 3 Hours

MAX. MARKS: 50

## Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

| 1 <b>A</b> . | List the classical laws of friction and explain the welding, shearing and ploughing theory of friction.                                                                                                                                                                                                                             | (04) |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1B.          | With relevant equations, summarize junction growth theory of friction.                                                                                                                                                                                                                                                              | (03) |
| 1C.          | Explain the stick-slip theory of friction showing the essential graph.                                                                                                                                                                                                                                                              | (03) |
| 2A.          | Define the phenomenon of wear and explain how the different wear phenomenon are classified, and state the limitations of the classifications.                                                                                                                                                                                       | (04) |
| 2B.          | Differentiate between abrasive and adhesive wear.                                                                                                                                                                                                                                                                                   | (03) |
| 2C.          | With a neat sketch explain the construction and working of an Efflux viscometer.                                                                                                                                                                                                                                                    | (03) |
| 3A.          | Explain any 5 important properties of lubricant.                                                                                                                                                                                                                                                                                    | (04) |
| 3B.          | Explain the influence of temperature and pressure on the viscosity of a lubricant? Justify using suitable equations.                                                                                                                                                                                                                | (03) |
| 3C.          | How are the lubricating oils graded according to Viscosity Index? Explain using the relevant graph.                                                                                                                                                                                                                                 | (03) |
| 4A.          | List and explain any 5 characteristics of a bearing material?                                                                                                                                                                                                                                                                       | (04) |
| 4B.          | Explain the mechanism of hydrodynamic instability in journal bearings with suitable diagram.                                                                                                                                                                                                                                        | (03) |
| 4C.          | A bearing used for light duty compressor has a load of 1 kN and uses an oil of viscosity 205 cP. The journal has a diameter of 50 mm and the bearing diameter is 50.05 mm. The speed of the journal is 15,000 rpm. The L/d ratio is limited to 1.2. Calculate the coefficient of friction and the power loss by Petroff's analysis. | (03) |

**5A.** Derive the equation for friction coefficient for a rolling process showing the **(04)** necessary sketch.

A hydrostatic step bearing has the following specifications. Inlet pressure = 4.5 MPa, viscosity of the lubricant = 0.03 Pa-s, External pressure = 0, Oil Film thickness = 0.005 mm, Vertical load on bearing = 18750 N, Shaft speed =

- **5B.** thickness = 0.005 mm, Vertical load on bearing = 18750 N, Shatt speed = (03) 900 rpm. Assume that the ratio of  $r_2/r_1 = 2$ . Determine the diameter of the shaft, the rate of oil flow through the bearing and power loss due to viscous friction.
- **5C.** Summarize the causes and remedy for any 3 bearing failures that occur in **(03)** rolling element bearings.