Reg. No.

ANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH. (COMPUTER & COMMUNICATION ENGINEERING)

MAKEUP EXAMINATIONS, 2019

SUBJECT: CYBER SECURITY [ICT- 4152]

REVISED CREDIT SYSTEM (26/12/2019)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer **ALL** the questions. *
- ✤ Missing data may be suitably assumed.
- Explain with neat diagrams the various types of hash functions based on block ciphers. 1A.
- Perform encryption and decryption using the Knapsack algorithm for the given super **1B.** increasing tuple= $\{2, 3, 6, 10\}$, multiplier r= 7 and modulus n= 22. Use Plain text = $\{1011\}$. Decrypt the resultant cipher text and verify the same. Use $\{4,1,3,2\}$ as the permutation table
- **1C.** Distinguish, with suitable examples between:
 - i. Substitution ciphers and Transposition ciphers.
 - ii. Stream and Block Ciphers.
- 2A. In a Substitution Permutation Network proposed by Shanon prove $LE_{i-1} = RE_i \otimes F$ i. [LE_i, K_i] and also verify the validity of the same.
 - ii. List the strengths of DES algorithm.
 - iii. If hexadecimal 2B is given as an input to S-Box 1 (S [1]) what will be its corresponding output? Refer Table Q.2A for S-Box 1.

								S[1]							
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

Table Q.2A: S-Box 1

Explain Fiat-Shamir Protocol, with message exchange diagram. **2B**.

Employing Whirlpool algorithm, find the output for the following : **2C**.

> If length of the original message is 3071 bits, compute the number of zeros needed i.

3

5

2

5 3 **2C.** in the padding bits.

ii. Calculate the round constant 2 [RC-2]. Refer to the Table Q.2C.

	0	1	2	3	4	5	6	7	8	9	A	B	С	D	E	F
0	18	23	C6	E8	87	B8	01	4F	36	A6	D2	F5	79	6F	91	52
1	16	BC	9B	8E	A3	0C	7B	35	1D	E0	D7	C2	2E	4B	FE	57
2	15	77	37	E5	9F	F0	4A	CA	58	C9	29	0A	B1	A0	6B	85
3	BD	5D	10	F4	CB	3E	05	67	E4	27	41	8B	A7	7D	95	C8
4	FB	EF	7C	66	DD	17	47	9E	CA	2D	BF	07	AD	5A	83	33
5	63	02	AA	71	C8	19	49	C9	F2	E3	5B	88	9A	26	32	B0
6	E9	0F	D5	80	BE	CD	34	48	FF	7A	90	5F	20	68	1A	AE
7	B4	54	93	22	64	F1	73	12	40	08	C3	EC	DB	A1	8D	3D
8	97	00	CF	2B	76	82	D6	1B	B5	AF	6A	50	45	F3	30	EF
9	3F	55	A2	EA	65	BA	2F	C0	DE	1C	FD	4D	92	75	06	8A
A	B2	E6	0E	1F	62	D4	A8	96	F9	C5	25	59	84	72	39	4C
B	5E	78	38	8C	C1	A5	E2	61	B3	21	9C	1E	43	C7	FC	04
С	51	99	6D	0D	FA	DF	7E	24	3B	AB	CE	11	8F	4E	B7	EB
D	3C	81	94	F7	9B	13	2C	D3	E7	6E	C4	03	56	44	7E	A9
E	2A	BB	C1	53	DC	0B	9D	6C	31	74	F6	46	AC	89	14	E1
F	16	3A	69	09	70	B6	C0	ED	CC	42	98	A4	28	5C	F8	86

Table Q.2C: Sub Bytes

2

- **3A.** Using the following Symmetric key ciphers, perform the encryption for the text "MIT Manipal". Use 'X' for padding.
 - i. Affine cipher with the key (7, 2).
 - ii. Vigenere cipher using keyword "Student".

	iii. Rail fence cipher with key $=4$.	5							
3B.	What is meant by session hijacking? Mention various approaches for storing session tokens.								
3C.	Define the terms Masquerading and Repudiation with relevant examples.								
4A.	Alice chooses $p=19$, $e_1 = 10$, $d = 16$ and a random variable r to be 5. For the message M=14,	_							
	show the signature generation and verification using ElGamal Digital Signature Scheme.	5							
4B.	With relevant diagrams elucidiate and compare OFB and Counter mode	3							
4C.	What is same origin policy? Give example.	2							
5A.	What is Kerberos realm? Discuss various message exchanges in Kerberos realm protocol.	5							
5B.	What is WAF? Discuss the various approaches of its implementation.	3							
5C.	Perform encryption and decryption using RSA algorithm for the given parameters p=5, q=7,								
	e=7 and message M=12.	2							