Reg. No.



## VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2019

## DATA STRUCTURES AND ALGORITHMS [ELE 4018]

REVISED CREDIT SYSTEM

| Time: 3 Hours               |                                                                                                                                                   | Date: 21 November 2019                                                                                                      | Max. Marks: 50           |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Instructions to Candidates: |                                                                                                                                                   |                                                                                                                             |                          |  |
|                             | <ul> <li>Answer ALL the questions.</li> </ul>                                                                                                     |                                                                                                                             |                          |  |
|                             | <ul> <li>Missing data may be suitably assumed.</li> <li>Draw neat sketches wherever required.</li> </ul>                                          |                                                                                                                             |                          |  |
|                             | ✤ Draw neat sketches where                                                                                                                        | ver required.                                                                                                               |                          |  |
| 1A.                         | What is the basis for algorithm analysis?                                                                                                         |                                                                                                                             | (02)                     |  |
| 1B.                         | Highlight the importance of pseudocode in algorithm analysis.                                                                                     |                                                                                                                             | (03)                     |  |
| 1C.                         | Solve the following recurrences using Master's theorem:                                                                                           |                                                                                                                             |                          |  |
|                             | a. T(n) = $3 T(n/2) + n^2$                                                                                                                        | b. T(n) = 16 T(n/4) + n                                                                                                     | (02)                     |  |
| 1D.                         | Write a recursive and an iterative algorithm to find nth Fibonacci number.<br>Obtain the time complexity of the code.                             |                                                                                                                             |                          |  |
| 2A.                         | What are the basic operat                                                                                                                         | tions that must be supported by a data st                                                                                   | ructure? <b>(02)</b>     |  |
| 2B.                         | Write a pseudocode algorithm to sort a random selection of number using the concept of priority queue. Determine the time complexity of the code. |                                                                                                                             |                          |  |
| 2C.                         | Modify the PUSH() and POP() functions of STACK to implement a QUEUE.                                                                              |                                                                                                                             | UEUE. <b>(02)</b>        |  |
| 2D.                         | Evaluate the following expressions using STACK. Show the content of the STACK after each significant step.                                        |                                                                                                                             |                          |  |
|                             | (4+8)*(6-5)/((3-2)*(2+2                                                                                                                           | ))                                                                                                                          | (03)                     |  |
| 3A.                         | Construct the binary sear                                                                                                                         | ch trees from the given traversals:                                                                                         |                          |  |
|                             | a. Preorder [15 10 8 12                                                                                                                           | 2 20 16 25]                                                                                                                 |                          |  |
|                             | b. Postorder [10 30 20                                                                                                                            | 150 300 200 100]                                                                                                            | (02)                     |  |
| 3B.                         | pseudocode algorithm to                                                                                                                           | ntation of a Binary search tree (BST),<br>o search for given item in it. Prove t<br>with respect to the structure of a BST. |                          |  |
| 3C.                         | Compare linked lists and a                                                                                                                        | arrays for implementing data structures.                                                                                    | (02)                     |  |
| 3D.                         |                                                                                                                                                   | thm to reverse a given linked list in constant he code with a suitable example.                                             | ant time.<br><b>(03)</b> |  |
| 4A.                         | With suitable examples e total number of edges in e                                                                                               | explain complete and incomplete graphs.<br>each case?                                                                       | What is<br><b>(02)</b>   |  |

| 4B. | Given a graph G and vertices $x$ and $y$ , write an algorithm to check if there exists a path from $x$ to $y$ . Determine the time complexity of the algorithm.             | (03) |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4C. | Explain with examples collision resolution policies used in Hashing.                                                                                                        |      |
| 4D. | Write a pseudocode algorithm to merge, two sorted arrays.                                                                                                                   |      |
| 5A. | Making use of the merging algorithm written in Q4D. Write a pseudocode algorithm to sort a given array using a QUEUE. Illustrate with a suitable example.                   | (03) |
| 5B. | Given the chain of 4 matrices : $A1=[5,4]$ , $A2=[4,6]$ , $A3=[6,2]$ , $A4=[2,7]$ .<br>Find the optimum sequence to multiply A1A4 using the concept of dynamic programming. | (03) |
| 5C. | Explain the concept of graph colouring with suitable example.                                                                                                               | (02) |
| 5D. | Explain P, NP-Complete type of problems.                                                                                                                                    | (02) |