Reg. No.

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKEUP EXAMINATIONS, DECEMBER 2019

MODERN POWER CONVERTERS [ELE 4010]

REVISED CREDIT SYSTEM

Time: 3 Hours

Date: 26, December 2019

Max. Marks: 50

(04)

(04)

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- 1A. Design a buck converter that has an input voltage of 3.3 V and an output voltage of 1.2 V. The output current is 4 A. The output voltage ripple must not exceed 2%. Specify the inductor value such that peak-to-peak variation in inductor current does not exceed 40% of the average value. Assume ideal components and switching frequency of 500 kHz. (04)
- **1B.** A boost converter has the following parameters: Vg = 20 V, D = 0.6, L = 100 μ H, R = 50 Ω , C = 100 μ F and fs = 15 kHz. Comment on the nature of inductor current and hence find the output voltage.
- 1C. A Cuk converter has the following parameters: Vg = 5 V, Vo = 12 V, Io = 1 A, fs = 100 kHz. Determine the value of the energy storing capacitor (C1) such that the capacitor voltage ripple should be less than 3%. (02)
- **2A.** A buck-boost converter has the following parameters: Vg = 24 V, D =0.4, R = 5 Ω , L = 20 μ H, C = 80 μ F and fs = 100 kHz. Determine the output voltage, inductor current average and maximum inductor current. **(03)**
- **2B.** Design a flyback converter to produce an output of 36 V from a 3.3 V source. The output current is 0.1 A and the turns ratio N2/N1 is 16. The magnetizing current ripple should not exceed 40% of the average and the output voltage ripple to be limited to 2%. Assume continuous current mode, ideal components and switching frequency of 100 kHz.
- **2C.** A forward converter has the following parameters: Vg = 100 V, N1/N2 = N1/N3 = 1, Lm=1mH, Lx = 70 μ H, R = 20 Ω , C = 33 μ F and D = 0.35. The switching frequency is 150 kHz. Determine a) output voltage and b) peak current in Lm in the transformer model. (03)
- **3A.** With a neat circuit schematic and relevant waveforms explain the working principle of a full-bridge dc-dc converter in continuous conduction mode. Derive an expression to estimate the output voltage.
- **3B.** A parallel resonant dc-dc converter supplying a resistive load of 10Ω from a source voltage of 100V. The switching frequency is 20% excess of the resonant frequency of 100 KHz, and characteristic impedance Zo = 5 Ω . Select suitable values of Lr and Cr for the converter and hence determine the output voltage.

(04)

(03)

3C.	A zero voltage switched dc-dc buck converter has the following specifications: Vg = 20 V, Lr = 1 μ H, Cr = 0.047 μ F, Io = 5 A. Determine the switching frequency such that the output voltage is 10 V.	(03)
4A.	A zero current switching dc-dc converter has the following specifications: Po= 30 W, Vo = 15 V, Zo = 2.5 Ω , Cr = 0.02 μ F, the time between diode turn-off and the switch turn-off is 4 μ sec. Find the input voltage and the switching frequency for suitable implementations.	(04)
4B.	Discuss in detail the basic constraints for the design of a high frequency inductor when the core geometrical factor Kg method is employed for the design.	(04)
4C.	List the different soft switching techniques that can be developed to enhance the efficiency of the converters.	(02)
5A.	Assuming continuous conduction mode, obtain the small signal ac state equations for a buck-boost converter using state-space averaging technique. Take the on state resistance of MOSFET as Ron and the drop across the diode as Vd.	(05)
5B.	Write a technical note on design steps of lead compensator.	(03)
5C.	Make a technical comparison between linear power supplies and switched mode power supplies.	(02)