Reg. No.

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2019

SOFT COMPUTING [ELE 4026]

REVISED CREDIT SYSTEM

Time	e: 3 Hours Date: 21, November 2019 Max. Marl	ks: 50
Instr	 uctions to Candidates: Answer ALL the questions. Graph sheet shall be supplied if necessary. Missing data may be suitably assumed. 	
1A.	A bipolar sigmoidal neural network has the initial weight vector $W^{(0)} = [1 - 1 \ 0 \ 0.5]^t$. Two sets of training inputs and respective desired response are as given below: $X_1 = [1 - 2 \ 0 - 1]^t$, $X_2 = [0 \ 1.5 - 0.5 - 1]^t$, $d_1 = -1$ and $d_2 = 0.5$. Using delta learning rule obtain new vector $W^{(1)}$ after one iteration. Assume learning constant $c = 1.5$ and function constant $\lambda = 1.2$.	(04)
1B.	Design a discrete bipolar neural network to perform the following classification: Class A – X ₁ = (-0.5, 2) $X_2 = (2, -1)$ output d _A = -1 Class B – X ₃ = (2, 0.5) $X_4 = (-0.5, -1)$ output d _B = 1	(03)
1C.	 State with reasons whether the statements given below are correct or not. If not, write possible correct statement. (i) If energy level of a Hopfield network is positive, it is unstable state. (ii) Unipolar signum activation function is a special case of sigmoidal activation functions, if λ =1. (iii) Delta learning rule is not applicable for discrete neural network. 	(03)
2A.	 Design and draw the schematic of a Hopfield network to store the following bit patterns: S₁ = [1 -1 1 -1]^t S₂ = [-1 1 -1 1]^t and S₃ = [-1 -1 1 1]^t. Obtain the stored pattern of the above network at the end of one iteration when an arbitrary input [-1 1 1 1]^t is initially applied to the network using energy function concept in asynchronous mode. 	(04)
2B.	Design a discrete neural network such that any point <u>INSIDE</u> the triangle is the solution for the pattern shown in Fig. Q2B . Draw complete neural network required.	(06)
3A.	Define the following terms used in fuzzy system: (i) support (ii) alpha-cut (iii) convex	(03)
3B.	Three output fuzzy sets are defined as given below in a universe of discourse X [0:9]: A = trapezoidal (1, 3, 4, 6), B = triangular (3, 5, 7) and C = triangular (5, 7, 9) The truncation levels of A, B and C are 0.6, 0.25 and 0.25 respectively during fuzzy rule implication. Determine the crisp output by centroid method.	(04)

	_					_		0.7	0.8	1.0	0.15
$R_1 =$	0.2	0.3	0.5	0.8	0.9	0.1		0.1	0.6	0.2	0.3
	0.4	0.8	1.0	0.7	0.5	0.3	$R_2 =$	0.6	0.4	0.8	0.5
	0.9	0.4	0.5	0.8	0.1	0.6		0.4	0.67	0.2	0.0
	0.3	0.6	0.9	0.8	0.5	0.2		0.5	0.2	0.7	0.4
								0.3	0.7	0.4	0.1

 $\begin{bmatrix} 0 & 7 \end{bmatrix}$

0.0

1 0

0 15

Obtain the composition $Q = R_1 \mathbf{o} R_2$ by Mamdani max-min operation.

Two linguistic variables A and B are defined as given below: 4A.

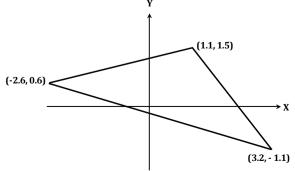
$$A = \left\{ \frac{0.5}{10} + \frac{0.6}{20} + \frac{0.2}{30} \right\} \qquad B = \left\{ \frac{0.75}{100} + \frac{0.9}{200} \right\}$$

and $\overline{\mathbf{B}}$ = YAGER compliment of B with $\omega = 1.5$

Given fuzzy inference,

Y is $\overline{\mathbf{B}}$ *IF* X is **A** *THEN* Y is **B**

X is $\overline{\mathbf{A}}$


Find (i) unary fuzzy set $\overline{\mathbf{A}}$ using (a) Dieness-Rescher implication (b) Zadeh implication

(ii) Crisp value of $\overline{\mathbf{A}}$ using weighted average method in each implication

- 4B. A fuzzy controller is to be designed for a washing machine. For a given weight of cloths and amount of dirt on cloths, the quantity of water required is to be determined. The universe of discourse are WEIGHT [0:5] in Kg, DIRT [0:1] in per unit and WATER [0: 10] in litre. The design shall include
 - Linguistic values and respective equation for triangular membership functions for all (i) linguistic variables considered
 - (ii) List of IF-THEN rules required

Calculate crisp value of quantity of water for a sample input of 3.5 Kg of cloth and 25% dirt using mean of maximum method of defuzzification. (06)

- 5A. Explain the terms with relevant illustrations as applied in Genetic Algorithm: (i) Fitness (ii) Crossover
- Using Genetic Algorithm, the function $f(x, y) = 1.5x^2 3xy$ with boundary conditions of $6 \le 10^{-1}$ 5B. $x \le 10$ and $-1 \le y \le 5$ is to be optimized. Obtain ranking, crossover, mutation and replacement for the first iteration. Use a population size of 4 and 5-bit binary string (06) representation of chromosome.

(04)

(04)

(03)