Reg. No.

(A constituent unit of MAHE, Manipal)

VII SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING) **MAKE UP EXAMINATIONS, DECEMBER 2019**

SOLID STATE DRIVES [ELE 4011]

REVISED CREDIT SYSTEM

Time: 3 Hours

Instructions to Candidates:

Date: 02 January 2020

Max. Marks: 50

(04)

(03)

(03)

(04)

(03)

(02)

(04)

(04)

- Answer ALL the questions.
 - Missing data may be suitably assumed.
- **1A.** Derive expressions for equivalent moment of inertia and torque referred to the motor shaft when a motor is driving two loads; one linear in nature and second rotational in nature
- A motor is required to drive the take-up roll on a plastic strip line. The mandrel on **1B**. which the strip is wound is 15cm in diameter and the strip builds up to a roll 25 cm in diameter. Strip tension is maintained constant at 1000 N. The strip moves at a uniform speed of 25 m/s. The motor is coupled to a mandrel by a reduction gear with a = 0.5. The gears have an approximate efficiency of 87% at all speeds. Determine the speed and power rating of the motor required for this application
- **1C.** Mention the various components of load torque. Hence comment on the modelling of these components of load torque.
- 2A. Write a short note on the various braking techniques employed for a DC motor. (03)
- 2B. A 2.4 kW, 220 V, 480 rpm, 12.8 A DC motor has the armature resistance and inductance of 2.2 Ω and 40 mH. It is fed by a single phase fully controlled rectifier with an ac source voltage of 240 V, 60 Hz. Identify the mode and calculate the speed for $\alpha = 120^{\circ}$, $T_a = 60$ Nm.
- **2C.** Derive an expression for the speed-torque relation of a three phase controlled rectifier fed separately excited dc motor, when operating in motoring mode with continuous current operation.
- 3A. A dc chopper is used for regenerative braking of a separately excited dc motor. DC supply voltage is 400 V. Motor has armature resistance of 0.2 Ω and motor constant is 1.2 volts/rad/sec. The average armature current during regenerative braking is kept constant at 300 A with negligible ripple for a duty cycle of 60%. Determine the maximum and minimum permissible braking speed.
- 3B. With a neat circuit schematic, plot the waveforms for armature voltage and armature current for a Class B chopper along with the triggering sequence.
- 3C. State the advantages of Squirrel cage induction motor over Dc motors. Also, show the stages involved in DC drives and Induction motor drives with help of block diagrams.

4A.	With the help of a suitable torque slip characteristics explain why stator voltage control method of speed is best suited for fan and pump drives. Also, with a suitable schematic explain how direction of rotation can be reversed while employing stator voltage control technique to an induction motor.	(04)
4B.	With the help of torque slip characteristics, explain the speed control of induction motor when operated with adjustable frequency at constant voltage. Mention the advantages and disadvantages of the same.	(03)
4C.	A 3 phase delta connected 6 pole, 50Hz, 400V, 925rpm, squirrel cage induction motor has the following parameters: $Rs = 0.2 \Omega$, $Rr^1 = 0.3 \Omega$, $Xs = 0.5 \Omega$, $Xr^{1}=1 \Omega$. The motor is fed from a voltage source inverter at constant V/f ratio. Calculate: (i) Speed for the frequency of 35Hz at full load torque.	
	(ii) Frequency for a speed of 600rpm at full load torque.	(03)
5A.	A three phase slip ring induction motor uses static rotor resistance control. Draw a neat circuit diagram and explain the working stating the advantages and disadvantages of the control scheme.	(03)
5B.	Explain the working of a static Kramer drive with the help of a suitable circuit diagram.	(03)
5C.	Mention the advantages of direct torque control technique over field oriented control technique. Draw the block schematic of direct torque control technique for an induction motor control application.	(04)