Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL

(A constituent unit of MAHE, Manipal)

VII SEMESTER B. TECH (MECHANICAL/IP ENGG.) END SEMESTER MAKE UP EXAMINATIONS, DECEMBER 2019

SUBJECT: DESIGN OF THERMAL POWER PLANT SYSTEMS [MME 4010]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer **ALL** the questions.
- Missing data may be suitably assumed.
- Use of heat exchanger data sheet, thermodynamics and heat transfer data book are permitted.
- 1A. With a neat sketch explain various heat exchangers present in the steam generation process.
 05
- 1B. Air enters at 1 atmosphere and 30°C the core of a circular finned tube matrix (surface CF-872 (C)). The air flows at the rate of 1618 kg/h perpendicular to the tubes and exits with a temperature 90°C. The core is 0.5 m long with 0.25 m² frontal area. Calculate the total pressure drop between air inlet and outlet and average heat transfer coefficient on the air side.
- **2A.** Explain with neat sketches the different zones of condensation in horizontal tube.
- **2B.** Find the length of the Shell and tube heat exchanger with following specifications:

Shell size	:	12″	Hot fluid	:	Treated water (5000 kg/h)
Number of pass	:	1	Cold fluid	:	Sea water (50000 kg/h)
Baffle spacing	:	0.25 m	, ,		Hot: 80°C / Cold: 38°C Hot: 40°C / Cold: 42°C

Tube material : Carbon steel, AISI 1010 Tube configuration : ³/₄" OD on 1" square pitch (20 BWG)

Neglect effect of property variation at shell side. Also neglect fouling resistance.

- **3A.** Sketch and explain a natural draught cooling tower. Define various cooling tower parameters.
- **3B.** Engine oil flowing at a rate of 2 kg/s need to be cooled from 100°C to 60°C in a double pipe heat exchanger with raw water(entry temperature = 20°C, flow rate = 2.04 kg/s) as coolant. The following design data are selected:

Annulus nominal diameter	Π	5", Schedule 40
Inner pipe nominal diameter	Ш	³ ⁄ ₄ ″, Schedule 40
Fin height	Ш	0.0127 m
Fin thickness	Ш	0.90 mm
Number of fins/tube	Ш	30
Number of tubes in the annulus	Π	2

Calculate oil and water side convective heat transfer coefficient.

05

05

05

05

- **4A.** With schematic, explain the hot fluid series/cold fluid parallel and cold fluid series/ hot fluid parallel arrangements in double pipe heat exchanger. State its necessity.
- 4B. A furnace heater is designed for heat load of 10 MW. The process fluid has the transfer coefficient of 1000 W/m²K. Tubes are 235 mm in diameter with 350 mm spacing and have the wall heat transfer coefficient of 2500 W/m²K. Vertical cylinder heater have 5 rows of horizontal plain tubes each 2.5 m long in convection section. Overall efficiency of the heater is 85 %. Natural gas fuel (CH₄) is fired with 25 % excess air. Take the average flue gas temperature as 900 K and tube temperature as 280 K. Find the overall heat transfer coefficient of tubes in the convective section.
- 5A. In a cooling tower (forced mode) performance test, the following readings are noted :

Water entry temperature	= 45°C	DBT at entry	=	33°C
Water exit temperature	= 40°C	DBT at exit	=	37°C
WBT at entry	= 25°C	Water flow rate	=	10 lpm
WBT at exit	= 30°C	Duration of test	=	300 s

Find:

- (a) Cooling tower duty
- (b) Cooling tower efficiency
- (c) Mass flow rate of air
- (d) Rate of make-up water
- **5B.** A condenser is to be designed to condense 200 kg/h of steam at atmospheric pressure. A square array of 144, 15 mm outside diameter tubes are available for the design and the wall temperature of the tube is maintained at 96°C.
 - (a) Estimate the length of the tube required (by referring Nusselt relation), if the condenser is to be installed in the horizontal position.
 - (b) If the above condenser is by mistake installed in the vertical position, will there be any change in the condensation rate? If so find the modified value.05

05

05