Reg. No.

VII SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOV 2019

SUBJECT: MECHATRONICS SYSTEM DESIGN [MTE 4101]

__/_/2019

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

Data not provided may be suitably assumed

1A.	Describe the classification of CPU architecture.	3	CO1
1 B .	Enumerate the differences between a microprocessor and a microcontroller.	2	CO1
1C.	Outline the common characteristics of an embedded system demonstrating a digital camera as an example.	5	CO1
2A.	Classify the instruction formats in a processor with an example for each.	5	CO1
2B.	Summarize the CPU power saving strategies used in a micro controller.	2	CO1
2C.	Discuss the priority of exceptions/interrupts in ARM7TDMI processor.	3	CO2
3A.	Explain the hazards of 3 stage pipeline in ARM processor.	3	CO2
3B.	Illustrate at least three multiple load and store instruction in ARM7TDMI with example.	3	CO2
3C.	Explain the THUMB programmers' model. Enumerate the differences between ARM and THUMB.	4	CO2
4A.	Develop an ARM assembly language program to count the sum of only even numbers stored in the location 0x20000000 to 0x20000100. Store the result in the memory location 0x20001000.	4	CO2
4B.	Classify the different types of instruction sets available in coprocessor with an example for each type.	3	CO2

4C. 5A.	 Write a complete ARM assembly program to perform the following. a. Load the number in the memory location 0x20000000. b. Add this number to itself in a loop until an overflow occurs. c. Store the result in the memory location 0x20001000 Write an mbed code to sweep the servo in its full range in the clockwise and anticlockwise direction. The servo motor is connected to p21 of an mbed LPC1768. 										CO2 CO3						
5B.	Write an eml application us is used to indi display is used a logic high s again. LED Seg No. LPC-1768 Port No	bedded ing LPC cate the l to displ ignal is s D1 g P2.7	C code 1768. A detection ay the to sent to t D2 f P2.6	to imp ssume t on of an otal cour he outp D3 a P2.5	blement hat the in object, a nt. When ut pin PO D4 b P2.4	the obje nput key y and A con the total 0.25 to pa D5 h P2.3	ct count with logi mmon an number ck and co D6 c P2.2	er for an c high on lode seve of object bunter sta D7 e P2.1	h industry pin P1.14 n segment equals 15, arts from 0 D8 d P2.0	itry 3 C .14 ent 15, n 0							
5C.	Write an mbed LPC1768 code to interface 2 mbed devices using UART as follows: Let p9 is used for UART Tx and p10 is used for UART Rx of mbed. Let a push button switch, connected to p20 of mbed 1 is used to increase the intensity of light connected to p21 of mbed 2. A push button connected to p19 of embed 1 is used to decrease the intensity of light of mbed 2.										CO3						