

INTERNATIONAL CENTRE FOR APPLIED SCIENCES MAHE, MANIPAL B.Sc. (Applied Sciences) in Engg.

End – Semester Theory Examinations – Nov./ Dec. 2020

I SEMESTER - MATHEMATICS - I (IMA 111)

(Branch: Common to all)

Time: 3 Hours		Date: 18 November 2020	Max. Marks: 50
	 Answer ALL the qu Missing data, if any, 	estions. , may be suitably assumed	
1.			
	a. Find the reduction	e reduction formula for $\int \sin^n x dx$ and hence evaluate $\int_0^{\pi/2} \cos^n x dx$	
	b. Evaluate the follow	wing: <i>i</i>). $\int_0^1 x^6 \sqrt{1-x^2} dx$, <i>ii</i>). $\int_0^\infty \frac{1}{(1-x^2)^2} dx$	$\frac{dx}{1+x^2)^5}$

c. If
$$y = a \cos(\log x) + b \sin(\log x)$$
 prove that
 $x^2 y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$
(10)

2.

- a. Find the distance of the point A(3, -4, 5) from the plane 2x + 5y 6z = 16measured parallel to the line $\frac{x}{2} = \frac{y}{1} = \frac{z}{-2}$
- b. Find the equation of the right circular cone whose vertex is at the origin and semivertical angle is α and having axis of z as its axis

c. Show that the series $1 + \frac{x}{2} + \frac{x^2}{3^2} + \frac{x^3}{4^3} + \cdots$..., where x > 0 is convergent (10)

3.

- a. Trace the curve $y^2(a x) = x^3$ where a > 0 with explanations
- b. Find the area bounded by the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^2$ where a > 0
- **c.** The cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ with $0 \le \theta \le 2\pi$ rotates about its base. Find the volume of the solid generated. (10)

4.

- a. With the usual notation prove that $tan \phi = r \frac{d\theta}{dr}$
- b. Find the radius of curvature of the curve $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$
- c. Find the evolute of the parabola $y^2 = 4ax$

5.

a. Evaluate the following:

i).
$$\lim_{x \to 0} \left[\frac{1}{x} - \frac{1}{e^x - 1} \right]$$
, *ii*). $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{1/x^2}$

- b. State the Lagrange Mean Value Theorem. Verify Rolle's theorem for $f(x) = x^2$ in [-1,1]
- **c.** Find the n^{th} derivatives of the following: i). $\frac{x+1}{x^2-4}$ ii). $sin^2 x$ (10)

(10)