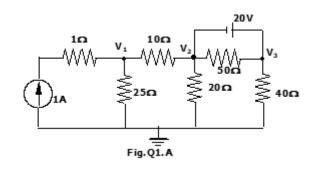
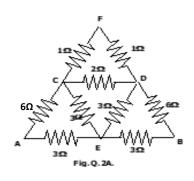
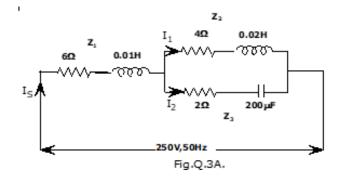


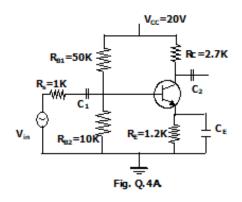
INTERNATIONAL CENTRE FOR APPLIED SCIENCES MAHE, MANIPAL

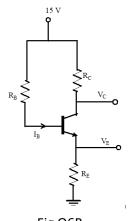
B.Sc. (Applied Sciences) in Engg.


End – Semester Theory Examinations – Nov./ Dec. 2020


II SEMESTER - ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING (IEE 121)


(Branch: Mechatronics)


ime:	3 Hours	Date: 05 December 2020	Max. Marks:	: 100
✓ ✓	Answer any FIVE fu Missing data, if any,	ll questions. may be suitably assumed		
Q1A	Using Nodal voltage analysis determines the node voltage V1, V2, V3, and power absorbed by the resistor $R=20$ ohms in the circuit shown in Fig.Q1A.			10 Mai
Q1B	A choke coil is connected in series with a 350hms pure resistance. When a 230V 50Hz single-phase AC supply is applied to this series network, the voltage drop across the coil is 100V, draws a current of 4A. Determine the following			
	i. Resistance of ii. The inductanc iii. Power loss in iv. Power factor of	e of the coil the choke coil.		10 Mar
		asor diagram taking supply current I as r	eference.	
Q2A	Determine the equ shown in Fig. Q.24	ivalent resistance between points A and	d B of the network	10 Mar
Q2B	factor 0.5lagging.	00V, 50Hz, load consumes 40KW activ It is proposed to improve the power factor el capacitor across the load. Calculate th capacitor required.	or to 0.98lagging by	10 Mai
Q3A	in Fig.Q.3A. Deter i. Current drawn ii. Power factor o	phase ac supply is supplying a series-parmine the following from the source and current in all the base of the circuit consumed by the circuit		10 Mar
Q.3B.	50Hz AC supply. consumed by the le I. Resistance and II. Total reactive III. Apparent pow	phase star-connected load supplied by a Load draws a lagging line current of 254 bad is 13.856KW. Determine the follow d inductance of load per phase power demanded by the load er absorbed by the load tage V_R as the reference phasor	A, and active power	10 Mar
Q.4A	Fig.Q.4A. Determi i. Quiescent ba ii. Quiescent co	se currents I_{BQ} llector current I_{CQ} llector to emitter voltage V_{CEQ} .	biasing, as shown in	10 Mai


Q.4B	Design an adjustable LM7805 based adjustable voltage regulator to regulate the output voltage 8V to 12 V from a 15V DC source. Assume the $I_{adj} = 100 \mu A$ and the feedback resistance between the output and adjustable pin, R1= 1K Ω , V_{ref} =5.	10 Marks	
Q.5A	With a neat schematic diagram and relevant equations, explain the working of a single-phase transformer. Also, list the various losses associated with transformer	12 Marks	
Q.5B	With a neat block diagram, explain the Digital communication system	8 Marks	
Q.6A	With a neat circuit schematic and input-output voltage waveform explain the working of a full-wave bridge rectifier. Hence derive the expression for dc output voltage and ripple factor of output voltage without filtering capacitor.		
Q.6B	For the circuit shown in Fig.Q6B. Calculate the following 1. Base current I _B 2. Emitter current I _E , 3. Bias and collector resistances R_C, R_B Choose $V_{BE} = 0.6 V$, $I_E = 2 mA \beta = 100 V_E = 2 V$, $V_C = 10 V$	5 Marks	
Q.6C	With a neat circuit schematic design, LM317 based voltage regulator to get an output voltage of 2V to 10V. Assume resistance connected between out pin and adjust pin (R1) is 1K Ω , Assume V _{ref} =1.25V, I _{adj} =100 μ A, and Vin =12V		
Q.7A	In a series-parallel circuit, the two parallel branches A and B are in series with the branch C. The impedances are $Z_A = (10+j8) \Omega$, $Z_B = (9-j6) \Omega$ and $Z_C = (3+j2) \Omega$. The voltage across the branch C is $(100 + j0) V$. Find the branch current I_A and I_B and the phase angle between them. Draw the phasor diagram	10 Marks	
Q.7B	 A single-phase 50 Hz, 500V transformer has 400 primary and 1000 secondary turns. If the net cross-sectional area of the core is 60cm². Determine the following The peak value of the flux Flux density in the transformer core EMF induced in secondary with 500V across the primary winding. Number of secondary turns required to induce an EMF of 2500V in the secondary winding. List out the losses in full loaded single phase transformer 	5 Marks	
Q.7C	Using source transformations, determine the voltage drop V_R across the 10 ohm resistor in the circuit shown in Fig.Q7C	5Marks	
Q.8A	Using the mesh current analysis, find the power supplied by the voltage source V_A in the circuit shown in Fig.Q8A.	10 Marks	
Q.8B	With a neat circuit prove that two watt meters are sufficient to measure three- phase power consumed by a balanced star-connected three-phase load.	10 Marks	

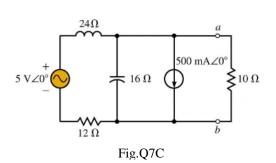
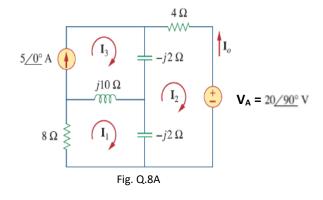



Fig Q6B.
