

INTERNATIONAL CENTRE FOR APPLIED SCIENCES MAHE, MANIPAL B.Sc. (Applied Sciences) in Engg. End – Semester Theory Examinations – Nov./ Dec. 2020 III SEMESTER - MATHEMATICS - III (IMA 231) (Branch: Common to all)

Ti	ime: 3 Hours	Date: 17 November 2020	Max. Marks: 100	
	 ✓ Answer any FIVE full questie ✓ Missing data, if any, may be a 	ons. suitably assumed		
1A 1B	Solve $(D^4 + 18D^2 + 81)y = c$ Solve $(x + y)^2 \frac{dy}{dx} = 4$	$\cos^3 x$		(9) (6)
1C	Solve $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$			(5)
2A	Solve the differential equation $\frac{d^2}{dz}$	$\frac{2y}{x^2} + n^2 y = \operatorname{cosec} nx$		(8)
2B	Solve $(D^2 - 3D + 2)y = \frac{1}{1+e^{-1}}$	$\frac{1}{x}$ by the method of variation of parameters.		(6)
2C	Solve $\frac{dy}{dx} + xy = xy^n$			(6)
3A	Solve $(x + 2y - 3)dy = (2x - 3)dy = (2x - 3)dy$	y+1)dx		(7)
3B	Solve $(D^2 - 5D + 6)y = cos$	3 <i>x</i>		(7)
3C	Solve $(3x^2y^4 + 2xy)dx + (2x^2y^4)dx + (2x^2y^2)dx + (2x^2y^4)dx + (2x^2y^2)dx + (2x^2y^2)dx + (2$	$x^3y^3 - x^2)dy = 0$		(6)
4A	Solve $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 10y = \cos x$	$2x + e^{-3x}$		(8)
4B	Obtain the solution of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$	= 0		(5)
4C	Using indicated transformation, s	solve the equation:		(7)
	$\frac{\partial^2 u}{\partial x^2} + 2$	$\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0; v = x, z = x - y$		
5A 5B	Solve $y'' + 5y + 6y = e^{-2t}$, y Find $L^{-1}\left\{\frac{s}{(s-1)(s^2+4)}\right\}$ using con	y(0) = y'(0) = 1 by Laplace transform metrological volution theorem	thod	(8) (7)

^{5C} Find and sketch a function g(t) for which $g(t) = L^{-1} \left\{ \frac{3}{s} - \frac{4e^{-s}}{s^2} - 4 \frac{e^{-3s}}{s^2} \right\}$ (5)

^{6A} Obtain i)
$$\left\{\frac{e^{at} - \cos bt}{t}\right\}$$
, a and b are constants (ii) $L\left\{\int_{0}^{t} e^{-t} \cos t dt\right\}$ (7)

6B Rewrite the following function in terms of unit step function and hence find its Laplace transform (6) $f(t) = \begin{cases} t-1, & 1 < t < 2\\ 3-t, & 2 < t < 3\\ e^{-t}, & t > 3 \end{cases}$

^{6C} A periodic function of period 2a is given by $f(t) = \begin{cases} a, & 0 \le t \le a \\ -a, & a \le t \le 2a \end{cases}$ (7) Show that $L\{f(t)\} = \frac{a}{s} \tanh\left(\frac{as}{2}\right)$.

^{7A} If f(z) = u + iv is an analytic function of z then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = (6)$ $4|f'(z)|^2$

^{7B} Evaluate i)
$$\oint_C \frac{\sin^2 z dz}{(z - \pi/6)^3}$$
, where $C: |z| = 1$ ii) $\int_0^{1+i} (x^2 + iy) dz$ along the path $y = x^2$ (8)

^{7C} Expand
$$\frac{z+1}{(z+2)(z+3)}$$
 in Laurent's series valid in region a) $|z| > 3$ b) $2 < |z| < 3$ (6)

8A Find all possible expansion of
$$f(z) = \frac{1}{z^2 - 2z - 3}$$
 about $z = 0$. (7)

- 8B Find the analytic function f(z) = u + iv for which $u v = e^x(\cos y \sin y)$. (8)
- 8C Find the orthogonal trajectories of family of curves $x^4 + y^4 6x^2y^2 = k$, where k is a constant. (5)
