

INTERNATIONAL CENTRE FOR APPLIED SCIENCES MAHE, MANIPAL

B.S. (ENGG.) End – Semester Theory Examinations – Nov./ Dec. 2020 III SEMESTER - PRINCIPLES OF THERMODYNAMICS – I (ME 231) (BRANCH: MECHANICAL)

Т	ime: 3 Hours	Date: 19 November 2020 Ma	
	 ✓ Answer any FIVE ✓ Missing data, if any 	full questions. y, may be suitably assumed	
1A.	Derive an expression for	or displacement work of an adiabat	ic process. 10
1 B .	• To a closed system 150 kJ of work is supplied. If the initial volume is 0.6 m ³ and pressure of the system changes as $p = 8 - 4V$, where p is in bar and V is in m determine the final volume and pressure of the system.		
2A.	Show that energy is a p	property of the system.	10
2B.	A fluid system under volume relation as p process the volume cha heat. Determine (i) Cha	goes a non-flow frictionless proce = $(5/V) + 1.5$ where p is in bar a anges from 0.15 m ³ to 0.05 m ³ and ange in internal energy (ii) C	ess following the pressure- and V is in m^3 . During the the system rejects 45 kJ of 10 Change in enthalpy.
3A.	Derive Steady Flow Er	ergy Equation. Mention the assum	ptions also. 10
3B.	A turbine, operating under steady-flow conditions, receives 4500 kg of steam per hour. The steam enters the turbine at a velocity of 2800 m/min, an elevation of 5.5 m and a specific enthalpy of 2800 kJ/kg. It leaves the turbine at a velocity of 5600 m/min, an elevation of 1.5 m and a specific enthalpy of 2300 kJ/kg. Heat losses from the turbine to the surroundings amount to 16000 kJ/h. Determine the power output of the turbine.		ives 4500 kg of steam per n/min, an elevation of 5.5 m bine at a velocity of 5600 300 kJ/kg. Heat losses from termine the power output of 10
4A.	State and prove Carnot	's theorem as applicable to reversib	ble heat engines. 10
4B.	A reversible heat engine 50° C. The engine driv at temperatures of 50° the network output of t heat transfer to the refr	he operates between two reservoirs es a reversible refrigerator which C and -25° C. The heat transfer to he combined engine refrigerator pla igerant and the net heat transfer to	at temperatures 700°C and operates between reservoirs the engine is 2500 kJ and ant is 400 kJ. Determine the the reservoir at 50°C.
5A.	State and prove clausiu	s theorem.	10
5B.	3 kg of water at 80°C is mixed with 4 kg of water at 15°C in an isolated system. Calculate the change of entropy due to mixing process.		5°C in an isolated system.
6A.	Draw PVT surface for	water. Indicate all the relevant phas	ses on it. 10
6B.	Determine the amount	of heat, which should be supplied t	o 2 kg of water at

	25°C to convert it into steam at 5 bar and 0.9 dry.	
7A.	Derive the expression for Wander walls constants in terms of critical properties.	10
7B.	A rigid cylinder containing 0.004 m ³ of nitrogen at 1 bar and 300 K is heated reversibly until temperature becomes 400 K. Determine : (i) The heat supplied. (ii) The entropy change. Assume nitrogen to be perfect gas (molecular mass = 28) and take $\gamma = 1.4$.	10
8.	 Write short notes on: (a) Statements of II law of thermodynamics (b) Thermodynamic equilibrium 	

- (c) Quasistatic process(d) Throttling calorimeter(e) Clausius inequality

20
