

1 1 1	

DEPARTMENT OF SCIENCES, I/III SEMESTER M.Sc (Physics) END SEMESTER EXAMINATIONS, DECEMBER 2020

ELECTROMAGNETIC THEORY [PHY- 5103]

(REVISED CREDIT SYSTEM-2017)

Tim	e: 3 Hours	Date: 31/12/2020	MAX. MARKS: 50
Note	e: (i) Answer ALL ques	stions	
i	(ii) Assume missing of	data, if any	
1	. (a) Distinguish between	en Poisson's equation and Laplace's	equation.
	(b) Find the electric fi	eld produced by a uniformly polarize	ed sphere of radius R.
	(c) Derive the expressi	ions for divergence and curl of electro	ostatic fields. [2+4+4]
2.	. (a) Consider a localize derive the expression f	ed charge distribution. Using the met for scalar potential at distant points.	hod of multipole expansion,
	(b) Derive Gauss's law	v in presence of dielectrics.	
	(c) A metal sphere of ralinear dielectric material infinity.	adius a carries a charge Q . It is surroull of permittivity ϵ . Find the potent	unded, out to radius b , by a ial at the centre relative to
			[4+2+4]
3.	(a) Discuss how one magnetostatics.	can introduce the concept of mag	gnetic vector potential in
. 7	(b) Quantitatively discu	ss the effect of magnetic fields on at	omic orbits
	(c) Derive Neumann's t		[3+4+3]

- 4. (a) State and derive Poynting's theorem
 - (b) A plane wave of frequency ω traveling in x-direction and polarized in y-direction, approaches the yz plane. Derive the expression for reflection coefficient. [5+5]

- 5. (a) Starting from the expression of polarization, derive Cauchy's equation.
 - (b) Consider a wire loop of radius a, around which we drive a sinusoidally varying current, at frequency ω . Derive the expression for magnetic flux for magnetic dipole radiation. [5+5]