		Ι .			
Reg. No.					

VII SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, DEC-2020

SUBJECT: HYDROLOGICAL ANALYSIS (PROGRAM ELECTIVE) [CIE 4006]

REVISED CREDIT SYSTEM (-12- 2020)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer ALL the questions.
- Missing data may be suitable assumed.

1A.	What are the basic data required for hydrological studies? Name the agencies	05
	from which these data can be obtained?	
1B.	Explain 'Maximum Depth Area Duration Curve' with a neat sketch.	05
2A.	Write a descriptive note on rainfall data representation.	06
2B.	One of four monthly-read rain gauges on a catchment area develops a fault in a	04
	month when the other three gauges record 37, 43 and 51 mm respectively. If the	
	average annual precipitation amounts of these three gauges are 726, 752 and	
	840 mm respectively and of the broken gauge is 694 mm, estimate the missing	
	monthly precipitation at the latter.	
3A.	Discuss the different methods of estimating the evapotranspiration of a crop.	06
	Discuss the factors affecting evapotranspiration.	
3B.	The total observed runoff volume during a storm of 6-hr duration with a	04
	uniform intensity of 15 mm/hr is 21.6 Mm ³ . If the area of the basin is 300 km ² ,	
	find the average infiltration rate and the runoff coefficient for the basin.	
4A.	Describe briefly the SCS-CN method of estimation of the catchment yield.	05

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

4B.	Compute the runoff volume due to a rainfall of 15 cm in a day on a 550 ha										
	watershed. The hydrological soil groups are 50% of group C and 50% of group										
	D randomly d	listributed in th	e watershed. The l	and us	e is 55	% cu	ltivated v	vith			
i	good quality	bunding and	45% waste land.	Assur	ne an	tecede	ent moist	ture	05		
	condition of	Гуре-III and us	e standard SCS-CN	I equat	ions. U	Jse th	e data gi	ven			
	in the following	ng table.									
	Land Use	Cover	Hydr	ologic	Soil (Group		1			
		Treatment	Hydrologic	A	В	C	D				
			Condition								
	Cultivated	Straight Row		76	86	90	93				
	Cultivated	Contoured	Poor	70	79	84	88				
			Good	65	75	82	86				
-	Cultivated	Bunded	Poor	67	75	81	83				
		- · ·	Good	59	69	76	79				
	Waste Land			71	80	85	88				
155											
5A.	Explain the concept and significance of Unit Hydrograph? List out the							05			
	assumptions involved in the Unit Hydrograph theory.										
5B.	Describe the basic Muskingum method of routing an inflow flood hydrograph								05		
	though a channel reach by assuming that the values of the coefficients K & x										
15	for the reach are known.										

#####******####

CIE 4006