jobs with lower index.

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL.

(A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) **END SEMESTER EXAMINATIONS, DECEMBER 2020**

REAL TIME SYSTEMS [ELE 4004]

REVISED CREDIT SYSTEM

	Time: 3 Hours Date: 30 December 2020 Max	Max. Marks: 50					
	Instructions to Candidates:						
	✤ Answer ALL the questions.						
	 Missing data may be suitably assumed. Representation of time is in mili-seconds. 						
-	 Nomenclature: Period(P); Execution time(E); Deadline(D); Arrival (A); Aperiodic (A) 	AP); Task (T)					
1A.	 What is a 'real-time system'? Explain how the concept of real-time is different traditional notion of time? What are the three types of real-time tasks classifie on the consequences of a task missing its deadline? Explain each of the types help of an example. Compare semaphore and Mutex for a real time operating with suitable example. 	ed based with the					
1B.	 Construct three Extended Finite State Machine model of a telephone syster partial behavior is described as: 	n whose					
	"After lifting the receiver headset, the dial tone should appear within 2 second dial tone cannot be given within 2 seconds, then an idle tone is produced. After tone appears, the first digit should be dialed within 30 seconds and the subseq digits within 5 seconds of each other. If the dialing of any of the digit is delay an idle tone is produced. The idle tone continues until the receiver handset is re	r the dial uent five ed, then					
1C.	 A cyclic real-time scheduler is to be used to schedule three periodic tasks characteristics shown in Table 1C. Suggest a suitable frame size that can I Show all the intermediate steps in your calculations. 						
2A.	 Check for feasibility of a pre-emptive Rate Monotonic (RM) scheduler used for shown in Table 2A using analytical calculations for time demand analysis ar the same with graphical method. 						
2B.	 Schedule the task set shown in Table 2B using Least Slack Time (LST) Sc method. Show the time-line [0 to 23ms] of the schedule. Show all the inter steps in your calculations for schedule. 	-					
2C.	 Generate an example to show that if the utilization U>1, then it doesn't im feasibility for Earliest Deadline First (EDF) Scheduler. Check by scheduling ta timeline. 						
3A.	A real-time system runs on pre-emptive RM scheduler with three periodic tas and three Aperiodic (AP) job arrives at instances (A) as shown in Table 3A . S the task set in the timeline if, a simple sporadic-server with period of 5ms and e budget of 1.5ms is used. Schedule the task set in the timeline and draw th budget consumption graph for a duration of 0 to 25ms.	Schedule xecution					
3B.	Schedule in timeline and compare preemptive and non-preemptive scheduling following jobs to be run on a dual-processor system. The precedence graph is						

- 3)
- 3)

(03)

- **4A.** Design a deferable server for the task set shown in **Table 4A**. Assume an aperiodic task with execution time 1.5ms arrives quite at random in every 8ms. Use pre-emptive RM scheduler for the system. Check for the system feasibility with server using analytical time demand approach.
- **4B.** A system has tasks T_1, T_2, T_3, T_4, T_5 , and T_6 with priority order given as: $T_1 > T_2 > T_3 > T_4 > T_5 > T_6$. The resource and computing requirements of these tasks are shown in **Figure 4B**. Compute different type of inversion under PCP that each task might undergo in the worst-case condition. State the reason for each such computation.
- **4C.** Write an Algorithm/Flowchart to show the working of Priority Ceiling Protocol (PCP) considering all the clauses/rules. Support the explanation by generating suitable example/s using set of tasks and resources for all the clauses/rules.
- **5A.** Explain in detail the modifications made to RM and EDF algorithms to handle task dependencies or precedence constraints.
- **5B.** What are the important requirements for an operating system to be called as real-time operating system?
- **5C.** Explain the working of count-down protocol used in real time communication for LAN. With the help of an example explain how high priority message is determined in Count-down protocol.

Table 1C			
Т	Р	Е	D
T1	8	3	8
T2	7	2	7
T3	5	1	5

Table 3A					
Т	Р	Е	AP	Α	Е
T1	3	0.5	A1	3	1
T2	4	1	A2	7	2
T3	19	4.5	A3	15.5	2

Table 3C			
Т	Р	Е	D
T1	3	1	3
T2	10	4	10

Table 2A			
Т	Р	Е	D
T1	3	1	3
T2	5	1.5	5
Т3	7	1.25	7

	Table 2B			
Т	Α	Е	D	
T1	0	10	33	
T2	4	3	28	
Т3	5	10	29	
	-	-		

	Table 4A			
Т	Р	Е	D	
T1	3	0.5	3	
T2	20	5	20	
Т3	60	10	60	



Figure 3B

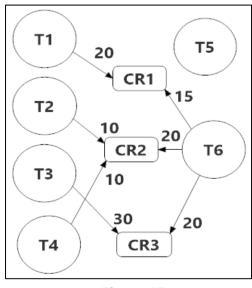


Figure 4B

(03)

(04)

(03)

(03)

(04)

(03)

(03)

ELE 4004