ICE 4011

Instructions to candidates : Answer ALL questions and missing data may be suitably assumed.

Include diagrams and equations wherever necessary

- 1A. Describe any 6 properties of the fusion node.
- 1B. Define mutual information between two random variables and obtain mutual information formula.
- 1C. Explain the centralized and hierarchical network topologies each with an example.
- 2A. Explain the puzzle-solving metaphor.
- 2B. Distinguish between the three types of IFS available in the smart sensor model.
- 2C. Given two time series, $P=(6.3, 2.7, 8.3, 6.9)^T$ and $Q=(5.2, 1.1, 7.4, 8.3)^T$, find cumulative matrix D in DTW using dynamic programming.
- 3A. Describe 4 scales of measurement.
- 3B. Explain the importance of data fusion in the information processing cycle.
- Given data for five people in Table 3C. Each person vector has a height, score on some test, and age. 3C. Determine the Mahalanobis distance of another person v = (61, 637, 53) from the set of data. Table 3C

4A. List the key features of Dasarathy's data fusion I/O model
--

- 4B. Describe the waterfall data fusion framework.
- 4C. Explain the original JDL data fusion model and mention its limitations.
- 5A. Differentiate greedy vs global NNSF
- 5B. Write a note on the information filter.
- 5C. Illustrate the Kalman filter cycle with a block diagram.

MAX. MARKS: 50

(3+3+4)

(3+3+4)

(2+3+5)

(3+3+4)

SEVENTH SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) **END SEMESTER DEGREE EXAMINATIONS, DECEMBER - 2020**

Reg. No.

SUBJECT: Multi-sensor data fusion [ICE 4011]

30-12-2020

TIME: 3 HOURS

Х	Y	Ζ	
Height	Score	Age	
77	547		27
61	553		31
74	578		35
67	632		48
71	615		54
76	657		57