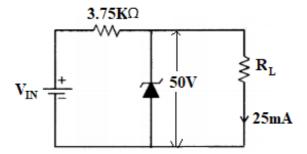
Question Paper

Exam Date & Time: 15-Mar-2021 (09:00 AM - 12:00 PM)

FIRST SEMESTER B.TECH END SEMESTER EXAMINATIONS, MARCH 2021

BASIC ELECTRONICS [ECE 1051 - 2020 -PHY]


Marks: 50 Duration: 180 mins.

Α

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

- 1) Consider a sinusoidal voltage of 200 Sin ($2\pi50t$) volts applied to a bridge rectifier with turns ratio (4) 10:1. If the load resistance is $1k\Omega$, diodes are ideal, calculate
 - i. Average load current.
 - ii. RMS load current
 - iii. Efficiency & Ripple factor
 - iv. Frequency of the output signal
 - B) Draw a self-bias circuit using Silicon transistor having $R_E = 200 \Omega$, $R_1 = 10 k\Omega$, $R_2 = 100k\Omega$, $R_C = (3) 2k\Omega$, $\beta = 100$ and $V_{CC} = 12V$. Find the Operating point
 - C) For the circuit shown, find the limits for V_{IN} for which it can vary without any loss in regulation. (3) Assume $I_{ZMIN} = 5mA$ and $I_{ZMAX} = 40mA$.

- 2) Draw the circuit using two OPAMPs to realize $V_0=2V_1-5V_2+V_3$ where V_1 , V_2 , V_3 are the input voltages (4)
 - A)
 - B) i) The inputs V₁=3mV and V₂=2mV is given to the non-inverting and inverting terminals of an OPAMP,respectively. The differential gain is 60dB and CMRR is 40dB. Calculate the output voltage.
 - ii) Realise an integrator using OPAMP and give its output expression for an input V=10 sin 200t.
 - C) Explain, with necessary diagram ,the working of an RC coupled amplifier with feedback and draw (3) its frequency response.
- 3) Simplify $f(A, B, C, D) = \sum m(0,1,3,4,5,6,7,12,13,14,15)$ using K-map and implement using AOI logic. (4)

A)

	B)	Obtain (25.50) ₁₀ - (67.75) ₁₀ using2's complement method.	(3)
	C)	Draw the logic diagram of a 3bit rippleup counter using negative edge triggered JK flip-flops. Sketch the timing diagram.	(3)
4)		An audio frequencysignal $10 sin(2\pi 500t)$ volts is used to amplitude modulate a carrier of	(4)
	A)	$50 sin(2\pi 10^5 t)$ volts. Determine the	
		i. Modulation index	
		ii. Bandwidth required for transmission	
		iii. Side band frequencies	
		Also Plot the frequency spectrum of AM wave	
	B)	A 250 W, 100 kHz carrier is amplitude modulated to a depth of 75% by a modulating signal of 1 kHz frequency. Determine the total power transmitted in side band frequencies.	(3)
	C)	Given a frequency modulated signalv(t)=10sin ($2\pi 10^8 t + 5\sin(2\pi 15000t)$), Determine the	(3)
		i. Modulation index	
		ii. Modulating frequency	
		iii. Frequency deviation	
5)		Draw the block diagramofaDigital Communication systemand explain the function of each block.	(4)
	A)		
	B)	Definesampling theorem.Consider an analog signal,	(3)
		$x(t)=15\cos(50 t)+10\sin(100 t)+5\cos(150 t).$	
		Determine the minimum sampling rate required to reconstruct the signal.	
	C)	Sketch the ASK,FSK and PSK waveforms for the given binary data 101101.	(3)
		End	