III SEMESTER B.TECH. (CHEM/BT) END SEMESTER ONLINE EXAMINATIONS, JULY 2021 SUBJECT: ENGINEERING MATHEMATICS [MAT 2153]

REVISED CREDIT SYSTEM

Time: 2 Hours

MAX. MARKS: 40

Instructions to Candidates:

- ✤ Answer ANY FOUR FULL questions.
- ✤ Missing data may be suitable assumed.

1A.	Verify Greens theorem for $\oint_c F.dr$ where C is the boundary the region formed by the points (0,0), (2,0) and (2,1) and $F = (2x + y^2)i + (3y - 4x)j$	5
1 B .	Evaluate $\iint_{s} F.nds$ where $A = 2x^{2}yi - y^{2}j + 4xz^{2}k$ and n is the surface of the region in the first octant bounded by $y^{2} + z^{2} = 9$ and x=2.	5
2A.	Evaluate the integral $\oint_c \frac{z^2 - z + 2}{z^3 + 2z} dz$, where C is the boundary of the rectangle with vertices $3 \pm i$, $-1 \pm i$.	6
2B.	Find all possible expansions of $f(z) = \frac{1}{z^2}$ about $z=i$	4
3A.	Find Fourier sine transform $e^{-ax} \cos ax$ and deduce the Fourier sine transform of $(x^4 + k^4)^{-1}$.	5
3B.	Find Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & for x < a \\ 0 & for x > a > 0 \end{cases}$ Hence deduce that $\int_0^\infty \frac{(\sin t - t \cos t)^2}{t^6} dt = \frac{\pi}{15}$.	5
4A.	Find the Fourier series expansion of $f(x)=x\cos x$, $0 < x < 2\pi$, $f(x+2\pi)=f(x)$.	5

4B.	Find the half range Fourier cosine series of $f(x) = e^x in(0,1)$.	5
5A.	A tightly stretched string with end points fixed at x=0 and x=2 is in initial equilibrium position and it is set to vibrate by giving initial velocity $3(2x-x^2)$. Find the displacement of the string at time t.	5
5B.	The ends of a rod of length 30cms have temperature 20° C and 80° C until the steady state condition prevails. Temperature at the ends was suddenly brought to $0^{\circ}C$ and kept so. Find the temperature distribution in the rod at time t.	5
6A.	If $u = r^2 \sin 2\theta + r \sin \theta$, find the conjugate harmonic of u and corresponding analytic function $f(z)=u(z)+iv(z)($ in terms of z).	5
6 B .	If $f(z) = u + iv$ is an analytic function, then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log_e f(z) .$	5

Γ
