III SEMESTER B.TECH. (CHEM/BT)

END SEMESTER EXAMINATIONS, MARCH 2021

SUBJECT: ENGINEERING MATHEMATICS [MAT 2153]

REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.

1A.	Verify Stoke's theorem for $\overrightarrow{A} = (2x - y)i - yz^2j - y^2z k$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is the boundary.	4
1B.	Find Fourier transform of $f(x) = \begin{cases} 1 + \frac{x}{a}, & -a < x < 0 \\ 1 - \frac{x}{a}, & 0 < x < a \\ 0, & otherwise \end{cases}$	3
1C.	If $f(z) = u + iv$ is analytic, then show that $\left(\frac{\partial f(z) }{\partial x}\right)^2 + \left(\frac{\partial f(z) }{\partial y}\right)^2 = f'(z) ^2$	3
2A.	State Laurents Theorem. Find all possible expansions of $\frac{1}{z^2+1}$ about z=i	4
2B.	Show that $F = (2xy + z^3)\mathbf{i} + x^{2\mathbf{j}} + 3xz^2\mathbf{k}$ is a conservative force field. Find the scalar potential and the work done in moving an object in this field from $(1, -2, 1)$ to $(3, 1, 4)$.	3
2C.	Find the half-range sine series of $f(x) = \begin{cases} x & 0 < x \le \frac{\pi}{2} \\ \pi - x & \frac{\pi}{2} \le x < \pi \end{cases}$	3
3A.	Obtain the Fourier series expansion of e^{-x} , $0 \le x \le 2\pi$, $f(x+2\pi)=f(x)$	4

3В.	Find the acute angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 - y^2 + 2z = 1$ at the point $(1, -2, 1)$.	3
3C.	Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, $u(x, 0) = 6 e^{-3x}$, using method of separation of variables.	3
4A.	Derive one dimensional wave equation with usual notations.	4
4B.	Prove that $div(\vec{r} ^n \vec{r}) = (n+3) \vec{r} ^n$. Show that $\frac{\vec{r}}{ \vec{r} ^3}$ is a solenoidal.	3
4C.	Define an analytic function. If $f(z)$ is analytic in a simply connected domain D then prove that $\int_C f(z)dz = 0$ for simple closed curve C lying entirely within D	3
5A.	$z^2 - \frac{1}{2}$	4
5B.	Find Fourier sine transform of x^{a-1} , where $0 < a < 1$. Hence show that $\frac{1}{\sqrt{x}}$ is self-reciprocal under Fourier sine transform.	3
5C.	State Greens Theorem and hence show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \oint_{c} x dy - y dx$.	3
