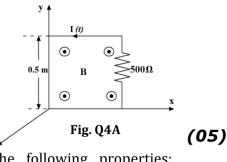
Reg. No.

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) GRADE IMPROVEMENT/ MAKEUP EXAMINATIONS, JULY/AUGUST 2021

ELECTROMAGNETIC THEORY [ELE 2155]


	ELEGIRO	REVISED CREDIT SYSTEM	: 2155]
Ti	me: 2 Hours	Date: 30 th July, 2021	Max. Marks: 40
In	 structions to Candidates: Answer ANY FOUR FULL qu Missing data may be suitably 		
1A. 1B.	• The length of the longest volume. A coaxial capacitor has dimensioned between the conducting cylinder $6mm; \epsilon_{R2} = 3, (6 < r < 9mm)$	$< \rho < 6, 30^{\circ} < \emptyset < 60^{\circ}, 2 < z < z$ straight line that lies entirely where $a = 3mm, b = 12mm$, and a line three different diele	5. within the above-defined (0) length of 1 <i>m</i> . The region ectrics: $\epsilon_{R1} = 5$, $(3 < r < r)$
2A.	capacitance 'C'. Further, for $E_{r_{max}} = 100 V/m$ prov a) $E_{r1} = [0.18/r]$ for $3 < r < 0$ b) $E_{r2} = [0.3/r]$ for $6 < r < 0$ c) $E_{r3} = [0.9/r]$ for $9 < r < 1$ Determine the total charge in a volume $3; 3 \le z \le 4$ if $\overline{D} = 4xa_x + 3y^2a_y - 5$ Further, considering a current dense	< 6mm; 9mm 12mm olume defined by six planes for v + $2z^3 a_z C/m^3$.	which $1 \le x \le 2; 2 \le y \le y$
2B. 3A.	Determine the total current I passidirection Region 1 described by $3x + 4y \ge 1$ a magnetic material for which $\mu =$ free space is current free, for $B_1 =$ The core of a toroid has a cross s relative permeability of 200. If the	ng through the surface $1 \le x \le 2$; 10 is free space while region 2 dest = $10\mu_0$. Assuming that boundary b $0.1a_x + 0.4a_y + 0.2a_z Wb/m^2$ fin- rectional area of 12 cm^2 and is m	(0) cribed by $3x + 4y \le 10$ is between the material and d H_1, B_2 and H_2 . (0) hade of a material having
3B.	of turns needed to obtain an indu A current filament carrying 8 A in A rectangular loop connecting $A($ A lies in the $x = 0$ plane. The loop segment. Determine the force action	Actance of 2.5 <i>H</i> . In the a_z direction lies along the example (0, 0.2, 0) to <i>B</i> (0, 0.2, 0.3) to <i>C</i> (0, 0) current is 3 mA and it flows in the	(0 ntire z-axis in free space. 0.7, 0.3) to D(0, 0.7, 0) to

- Side AB •
- Side DA
- Side CD

(05) Page 1 of 2

4A. A perfectly conducting filament containing a 500Ω resistor is formed into a square as shown in **Fig. Q 4A**. determine the flowing current in the loop if the existing magnetic field is given by:

$$B = 2\cos[3\pi \times 10^8 (t - x/c)]a_z \mu T$$
 where $c = 3 \times 10^8 m/s$

4B. Assume a homogenous material of infinite extent having the following properties: $\sigma = 0$; $\varepsilon = 2 \times 10^{-10} F/m$ and $\mu = 1.25 \times 10^{-5} H/m$.

Let $\overline{E} = 400 \cos(10^9 t - kz) a_x V/m$. If all the fields vary sinusoidally (or cosinusoidally), using Maxwell's equations determine:

- The electric flux density
- Magnetic flux density and field intensity
- k
- **5A.** A certain medium has its conductivity (σ) = 0 and relative permeability (μ_R) = 1. A uniform plane wave defined by $\overline{E}(z,t) = 800 \sin(10^6 t 0.01z)a_y V/m$ propagates through it in the a_z direction. Using Maxwell's equations, determine the following:
 - The magnetic field intensity $\overline{H}(z,t)$
 - The relative permittivity ε_R
 - The intrinsic impedance of the medium.
- **5B.** With a neat diagram and appropriate explanations, derive the expressions for reflection and transmission co-efficients when a uniform plane-wave, propagating along the +z-axis, is incident normally on an interface (at z = 0) between two different media.
- **6A.** A plane wave of 16 *GHz* frequency and $\overline{E} = 10 V/m$ propagates through a body of salt water defined by the relative permittivity and relative permeability of 100 and 1 respectively. The conductivity of the medium is assumed to be100 *S*/*m*. Determine the following parameters:
 - Attenuation constant
 - Phase constant and phase velocity
 - Intrinsic impedance of the medium
 - Depth of penetration of the wave in the medium.
- **6B.** Using the fundamentals of oblique incidence of a prallelly polarized uniform plane wave at an interface z=0 between two perfect dielectrics, prove that:

$$i) \frac{E_{ro}}{E_{io}} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$
$$ii) \frac{E_{to}}{E_{io}} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$

Where θ_t = angle of refraction; θ_i = angle of incidence.

(05)

```
(05)
```

(05)

(05)