	Reg. No.									
ANIPAL INSTITUTE OF TECHNOLOGY										
MANIPAL (A constituent unit of MAI	HE, Manipal)									

DEPARTMENT OF MECHATRONICS ENGINEERING III SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, Month Year

SUBJECT: DIGITAL SYSTEM DESIGN [MTE 2152]

(Date)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

Q. No		Μ	СО	РО	LO	BL
1A.	Design a combinational circuit which has four inputs A,B,C,D and three outputs X,Y,Z. XYZ represents a binary number whose value equals the number of 1's at the input.	4	CO1	PO1 PO2 PO12	C1, C7, C13	3
1B.	Implement full subtractor $(x,y,B_{in} \text{ are inputs}; d,B_{out} \text{ are outputs})$ using two 4 to 1 Multiplexers and residual gates, taking y and B_{in} as select lines.	3	CO2	PO1 PO2 PO3 PO12	C2, C7, C9, C13	1,3
1C.	Design a presettable counter which counts from 7 to 14, using D flip flops	3	C03	PO1 PO3 PO12	C3, C7, C8, C9, C13	3
2A.	Implement the following expression using 3 to 8 decoders (Active high) and residual gates. $f(w,x,y,z) = \sum m(1,2,6,7,9,11,12,14)$	4	CO2	PO1 PO3 PO12	C2, C7, C9, C13	3
2B.	Write a gate level Verilog code for a 1 bit full subtractor	4	CO5	PO1 PO2 PO5 PO12	C6, C7, C8, C18	1,3
2C.	Convert the given Hexadecimal number F96AD into its equivalent binary number. Hence obtain gray code of the same.	2	CO2	PO1 PO2 PO12	C2, C7, C9, C13	1
3A.	Implement a MOD 156 counter using 7493	4	CO3	PO1 PO3	C3, C7,	3

				PO12	C8, C9, C13	
3B.	What is race around condition? Mention the condition and type of flip flop in which it occurs. How can it be avoided?	3	CO3	PO1 PO12	C3, C7, C8, C9, C13	1
3C.	Write a data flow Verilog code for a 4 bit Full adder	3	CO5	PO1 PO2 PO5 PO12	C6, C7, C8, C18	1, 3
4A.	AB flipflop has a characteristic equation. $Q^+ = BQ + A\overline{Q}$ Construct AB flip flop using T Flip flop	4	CO3	PO1 PO3 PO12	C3, C7, C8, C9, C13	3
4B.	Briefly explain the following with block diagram1. CPLD2. FPGA	4	CO4	PO1 PO6 PO12	C3, C7, C8, C13	1
4C.	Using 74LS194 wired as a right shift register implement ring counter.	2	CO3	PO1 PO3 PO12	C3, C7, C8, C9, C13	3
5A.	Design a 3 bit binary down counter using D flip flops.	4	CO3	PO1 PO3 PO12	C3, C7, C8, C9, C13	3
5B.	Design a sequence detector (Mealy FSM) to detect the sequence 0110 in a continuous data input stream. Use T Flip flop.	6	CO3	PO1 PO3 PO12	C3, C7, C8, C9, C13	3