		Reg. No.									
ANIPAL INSTITUTE OF TECHNOLOGY											
NSAIRED BY LIFE	MANIPAL (A constituent unit of MA.	HE, Manipal)									

DEPARTMENT OF MECHATRONICS ENGINEERING III SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, March 2021

SUBJECT: DIGITAL SYSTEM DESIGN [MTE 2152]

5/3/2021

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

Ω		М	CO	ΡΩ	IO	BI
Q. No		IVI	co	10	LU	DL
1A.	Obtain i) minimal SOP ii) minimal POS expression using K- map for the following equation. $f(A,B,C,D)=\sum m(0,2,4,5,6,15)+d(3,7,8,9,10,13)$	4	1	PO1 PO12	1, 7, 13	3
1B.	Implement the four Boolean functions listed below using three half adder circuits. $D = A \oplus B \oplus C$ $E = \overline{A}BC + A\overline{B}C$ $F = AB\overline{C} + (\overline{A} + \overline{B})C$ $G = ABC$	4	2	PO1 PO2 PO12	2,7, 9, 13	3
1C.	Using 74283 develop a 4 bit Binary to Excess 3 code converter	2	2	PO1 PO3 PO12	2,7, 9, 13	3
2A.	Realize the Boolean expression $f(w,x,y,z) = \sum m(0,2,4,5,7,9,10,14)$ Using a multiplexer tree structure. The first level should consist of two 4-to-1 line multiplexers with variables w and z on their select lines S1 and S0, respectively, and second level should consist of a single 2-t0-1 line multiplexer with the variable y on its select line.	4	2	PO1 PO3 PO12	2,7, 9, 13	2,3
2B.	Write a behavioral Verilog Code for a 1 bit full adder. Using this as a component write a Verilog code for a 4 bit full adder.	4	5	PO1 PO5 PO12	6,7, 8, 18	1,3
2C.	Which are the asynchronous inputs of Flip Flops? State their importance.	2	3	PO1 PO12	3,7, 8,9, 13	1

3A.	Design and implement a 4 bit even number generator using T flip flops.	4	3	PO1 PO2 PO3 PO12	3,7, 8,9, 13	3
3 B .	Construct a JK flip flop using a D flip flop, a 2 to 1 multiplexer and an inverter.	4	3	PO1 PO3 PO12	3,7, 8,9, 13	3
3C.	Design a Divide by 10 counter using IC 7493	2	3	PO1 PO2 PO3 PO12	3,7, 8,9, 13	3
4A.	Design a 3 bit gray code down counter using D flip flops.	4	3	PO1 PO2 PO3 PO12	3,7, 8,9, 13	3
4B.	Define a Programmable Logic Device. List the classification and explain each of them.	4	4	PO1 PO6 PO12	3,7, 8, 13	1
4C.	Design an asynchronous counter to count from 4 to 12 using T flip flops.	2	3	PO1 PO2 PO3 PO12	3,7, 8,9, 13	3
5A.	Using a 4 bit universal shift register (74LS194) design a sequence generator which cycles through the following sequence. 0-8- 12-6-13-11-7-3-1-0	6	3	PO1 PO2 PO3 PO12	3,7, 8,9, 13	3
5B.	List the different levels of modelling in Verilog	2	5	PO1 PO5 PO12	6,7, 8, 18	1
5C.	For the inputs specified sketch Q _M and Q _S of the given flip flop. Consider a –ve edge triggered flip flop.	2	3	PO1 PO12	3,7, 8,9, 13	1,3
	к					