Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

FOURTH SEMESTER BTECH. (E & C) DEGREE IN-SEMESTER EXAMINATION AUGUST 2021 SUBJECT: VLSI DESIGN (ECE - 2254)

TIME: 2 HOURS

Instructions to candidates

- Answer **ANY FOUR** questions.
- Missing data may be suitably assumed.
- 1A. Derive the pull-up to pull-down ratio for an NMOS inverter driven through one pass transistors and one transmission gate as shown in **Figure 1A**.
- 1B. Derive the equation for drain current of NMOS transistor.

(5+5)

MAX. MARKS: 40

2A. A set of I-V characteristics of an NMOS transistor at room temperature have been enumerated in Table 2A for different biasing conditions. Using data, Solve for threshold voltage and Electron mobility. Given, W/L= 1, Tox= 300 Å.

Table 2A

VGS	VDS	VSB	ID(µA)
4	4	0	200
5	5	0	400

2B Calculate I_D and V_{SD} , and indicate the region of operation of transistor M₁ for the circuit in **Figure** 2B. Vtp = -0.4 V, $Kp = \mu p*Cox = 120 \mu A/V^2$, and W/L = 2.

(3+7)

3A. Consider a CMOS inverter with the following device parameters shown in **Table 3A**. **Table 3A**

Parameter	NMOS	PMOS		
μC_{ox}	60 μA/V ²	20 μA/V ²		
V _{th}	0.6 V	- 0.8 V		
$V_{dd} = 3 V, V_{ss} = 0 V$				

Determine the ratio of $\frac{L_n/W_n}{L_p/W_p}$ with switching threshold voltage 1.5 V. and draw the transfer characteristic when Vdd changes to 4 V.

3B. Write ten differences between CMOS technology and Bipolar Technology.

(5+5)

- 4A. Explain the working of an enhancement type NMOS transistor in cut- off, linear and saturation region. Plot the current-voltage characteristics.
- 4B. Identify the steps require for the fabrication of CMOS P-well process with neat diagram and explain. Draw the schematic of parasitic latch-up circuit developed in CMOS P-well process.

(5+5)

- 5A. Consider a 2:4 decoder with inputs A, B and outputs D3, D2, D1, D0. Outputs are active high signal. Given, variables, complement of variables and inputs logic '1' and '0' are available to designer. Implement the 2:4 decoder with NMOS pass transistors with proper interconnections.
- 5B. Explain the problems associated with first generation of BICMOS inverter. Also, Implement three input majority function using BiCMOS gate logic.

(6+4)

- 6A. Consider a pseudo NMOS inverter driving another pseudo NMOS inverter. What will be the conditions of PMOS and NMOS transistor around the inverter threshold? What will be the new pull-up to pull-down ratio in the case of pseudo NMOS inverter if $\mu_n = \mu_p$?
- 6B. Implement logic function $F = \overline{a + b + c}$ using pseudo NMOS gate logic and CMOS switch logic. (5+5)

