Reg. No.

FOURTH SEMESTER B.TECH. (ELECTRONICS & INSTRUMENTATION ENGG.) ONLINE GRADE IMPROVEMENT/MAKE-UP EXAMINATIONS, AUGUST - 2021

DIGITAL SYSTEM DESIGN [ICE 2251]

	13-08-2021 MAX. MARKS: 40	
	Instructions to candidates • Answer ANY FOUR FULL questions. • Missing data may be suitably assumed.	
1 A .	Develop a sequence detector along with circuit to detect the sequence 1101. Write a behavioural code for the same.	6
1B.	Realize the circuit developed in Q1A in Verilog using structural style.	4
2A.	Write a configurable Verilog code that takes an input clock of 10MHz and depending on the configuration sets the output to 2MHz or 4MHz or 6MHz or 8MHz.	5
2B.	Given a crystal frequency of 50MHz, a Verilog code is developed to generate a pulse train of 4ms. Draw the timing diagram for the same. The signals expected in the figure are – system clock reset counter output. Mathematical calculations to support the solution is expected	5
3A.	Develop a 4bit BCD up-counter using D Flip-Flop (DFF) using structural coding. Implement the DFF (positive edge triggered with active low reset) using UDP.	5
3B.	Illustrate operator precedence with examples.	5
4A.	Find a minimum-row PLA table and diagram to implement the following equations: X (A, B, C, D) = Σm (0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15) Y (A, B, C, D) = Σm (0, 1, 4, 5, 8, 10, 11, 12, 14, 15) Z (A, B, C, D) = Σm (0, 1, 3, 4, 5, 7, 9, 11, 15) Write two difference between PLA and PAL Explain design flow for ASICs based system design, bigblighting outcome from in each step	5
4D.	Explain design now for ASICs based system design, highlighting outcome from in each step.	5
5A.	Explain the programming technologies used to make the FPGAs field programmable.	5
5B.	Sketch the basic block diagram of Xilinx Spartan IIE FPGA. Also explain the major configurable elements briefly.	5
6A.	Determine the necessary inputs to the following network (Fig.6A) to test for i) b stuck at 0 ii) g stuck at 1.	5
	^W 1 b h	

Fig. 6A

6B. Explain logic element and operating modes available in Altera MAX-II FPGA. Explain the **5** technology used to make it field programmable.