

FOURTH SEMESTER B.TECH. (ELECTRONICS & INSTRUMENTATION ENGG.) ONLINE GRADE IMPROVEMENT/MAKE-UP EXAMINATIONS, AUGUST - 2021

SUBJECT: LINEAR INTEGRATED CIRCUITS [ICE 2254]

TIME: 2 HOURS

06-08-2021

MAX.MARKS: 40

Instructions to candidates: Answer any FOUR FULL questions.

Missing data may be suitably assumed.

1A. Explain the working of the non-ideal Op Amp circuit shown in Fig Q. 1A. Derive the expression for the gain. Given, $R_1=3k\Omega$ and $R_2=20K\Omega$. Find out the gain for $a=10^3$ and $a=10^4$ and comment on your findings.

Fig.Q.1A

1B. Design a Temperature to Voltage converter that will measure temperatures between 25°C and 50°C. Given: Thermistor with characteristics given in Table Q.1B be used as transducer.

Temp. (°C)	R _{trans}
25	10,000
30	8,057
35	6,530
40	5,327
45	4,370
50	3,603

Table Q.1B

(4+6)

- A 741C Op Amp with ±15V supply is configured as a noninverting amplifier with a gain of 10 V/V.
 (i) If the AC input amplitude is Vin = 0.5 V, what is the maximum frequency before the output distorts? (ii) If f = 10 kHz, what is the maximum value of Vin before the output distorts? (iii) If Vin = 40 mV, what is the useful frequency range of operation? (iv) If f = 2 kHz, what is the useful input amplitude range?
- 2B Design a wide bandpass filter with $f_L = 200$ Hz and $f_H = 1$ KHz and a passband gain = 4. Draw the frequency response plot of this filter and calculate its figure of merit.

(4+6)

- 3A Explain with a circuit schematic, working of a peak detector using Op Amp. Illustrate how can it be converted to a sample and hold circuit.
- 3B Explain the working of the circuit shown in Fig Q.3B if $R_1=10K\Omega$, $R_2=260K\Omega$, $R_3=100K\Omega$. Sketch and comment on the output of the circuit for a 3V peak Sine wave as V_I.

Fig.Q.3B

(4+6)

- 4A Derive an expression for the frequency of oscillation for a Wein Bridge oscillator and deduce the condition for obtaining sustained oscillations.
- 4B Design a circuit to generate square waveform with following specification. frequency 1 KHz, duty cycle 75%, amplitude excursion -5V to +5V. Available power supply is \pm 15 V.

(5+5)

- 5A Using 555 timer design a circuit to work as a missing Pulse detector. Illustrate it's working.
- 5B A 4-bit weighted-resistor DAC is implemented with $V_{REF} = -3.200$ V and a high-quality Op Amp, but gross resistor values, namely, $R_f = 9k\Omega$ instead of $10k\Omega$, $2R = 22k\Omega$ instead of $20k\Omega$, $4R = 35k\Omega$ instead of $40k\Omega$, $8R = 50k\Omega$ instead of $80k\Omega$, and $16R = 250k\Omega$ instead of $160k\Omega$. Find the gain error, along with the integral and differential nonlinearities.

(5+5)

- 6A Illustrate the working of a basic PLL with a block diagram.
- 6B Explain with relevant figures, construction and working of a switching regulator. Also list the advantages it offers over linear voltage regulators.

(4+6)
