

V SEMESTER B.TECH. EXTERNAL EXAMINATIONS MARCH 2021

SUBJECT: BIOPROCESS ENGINEERING [BIO 3152]

Date of Exam: 23/03/2021 Time of Exam: 2.00 PM – 5.00 PM Max. Marks: 50

Instructions to Candidates:

✤ Answer ALL the questions & missing data may be suitable assumed

	concentration of 0.00875 g/L	nzyme	n initial e	d for ar	obtaine	ve been	wing data ha	Follo								
					action:	alysed re	enzyme cat	for an								
5		4	5	6.7	10	20	S, g/L		1A.							
	Find K_m , V_{max} and K_2 using	0.29	0.34	0.41	0.51	0.67	V, g/L.min									
							-Woolf plot	Hane								
	industry for starch thinning	o textile	ditive to	is an ac	gated a	g investi	lase is bein	α-am	1B.							
	nylase se is 10 mM. At 60°C,	for α-an	constant i	haelis c	he Mic	textile. T	s in making	effect								
5	16 min. Starch hydrolysis is	life of	h a half-	ion wit	eactivati	ect to de	lase is subj	α-am								
,	concentration is 90 gmol $/m^3$.	l starch	Гhe initia	eactor.	batch re	ll-mixed	d out in a we	carrie								
	.14 mmol/L.s. How long does	sis is 0	f hydroly	e rate o	ction th	of the rea	beginning o	At the								
	ent?	rch pres	of the star	e 80% o	drolyze	me to hy	for the enzy	it take								
	A continuous sterilizer with	$0.1 h^{-1}$.	tion rate	ith dilu	rated w	at is open	m ³ chemost	A 15								
	um to the fermentor. Medium	d mediu	sterilize	delivers	ooling	d flash c	injection an	steam								
	130°C. The concentration of	ned at	s maintai	ilizer is	the ster	ction of	holding see	in the								
	ble contamination risk is one	acceptat	mL, an a	is 10 ⁵ /	nedium	he raw n	minants in t	conta								
5	activation energy for thermal	nt and a	s constan	rrheniu	The A	months.	ism every 3	organ	2A.							
	ol respectively. The sterilizer	i kJ/gm	ind 288.5) ³⁹ h ⁻¹ a	7.5 x 10	d to be 7	are estimate	death								
	is 1000 kg/m ³ and viscosity is	lensity i	e liquid c	$30^{\circ}\mathrm{C}$ th	n. At 1	er is 12 ci	nner diamete	pipe i								
	6.1 1 1 1	1 .1	•	1.	1 (1	C (n.h.	3 kg/1								
	of the holding section.	length o	nine the	w deteri	lug flov	perfect p	Assuming	1.								
	tion of a continuous starilizar	effects a	spersion of the held	$\frac{1}{2}$	ired if a	ion of of	What leng	11. Const								
	stant of the contaminant is 10	rate cor	fic death	ation in	erment ature th	t temper	uer steriitzai									
	s 5 seconds, calculate the Del	ection is	olding se	n the h	e time i	residenc	the average	s^{-1} . If								
			sults.	n the re	l explai	wing and	for the follo	factor	2 R							
						= 200	For Pe	i.	2D.							
			low	g plug f	ssuming	= 200, as	For Pe	ii.								
				nlug fl	umina	= 50	. For Pe	111								
	sulture When the substrate	hatch c	ism in	oorgan	a mici	<u>– 50, ass</u> wth of	der the gro	Consi								
5	the observed substrate viold	rv 1.0 h	ibles eve	sity dor	ell den	igh the c	nterestion is h	0000	3A.							
	the observed substrate view						ntration is n	conce	0110							
	 A 15 in chemostat is operated with diducin rate 0.1 if 1. A continuous sterilized with steam injection and flash cooling delivers sterilized medium to the fermentor. Medium in the holding section of the sterilizer is maintained at 130°C. The concentration of contaminants in the raw medium is 10⁵/mL, an acceptable contamination risk is one organism every 3 months. The Arrhenius constant and activation energy for thermal death are estimated to be 7.5 x 10³⁹ h⁻¹ and 288.5 kJ/gmol respectively. The sterilizer pipe inner diameter is 12 cm. At 130°C the liquid density is 1000 kg/m³ and viscosity is 3 kg/m.h. i. Assuming perfect plug flow determine the length of the holding section. ii. What length is required if axial dispersion effects are taken into account? Consider sterilization of a fermentation in the holding section of a continuous sterilizer. Assuming constant temperature, the specific death rate constant of the contaminant is 10 s⁻¹. If the average residence time in the holding section is 5 seconds, calculate the Del factor for the following and explain the results. i. For Pe = 200 ii. For Pe = 200, assuming plug flow iii. For Pe = 50, assuming plug flow Consider the growth of a microorganism in batch culture. When the substrate vield of the concentration is high, the cell density doubles every 1.0 h, the observed substrate yield 								2A. 2B.							

	(50%), maintenance (20%), as well as product formation (30%). The product formation													
	is strictly growth-associated. The batch reactor is inoculated with 0.01 g DCW/L and 20													
	g/L substrate. Estimate:													
	i. The maximum cell density (after lag phase).													
	ii. Refer to part (a), and estimate the time (after lag time) required achie	ii. Refer to part (a), and estimate the time (after lag time) required achieving it.												
	iii. Refer to part (a) and (b), and determine the value of the maintenance	coefficient												
	(g substrate/g DCW.h)	(g substrate/g DCW.h)												
	DCW = dry cell weight	DCW = dry cell weight												
3B.	Differentiate between Exponential growth model and Logistic Model.													
	Define the following:													
3C.	i. Endogenous metabolism		3											
	ii. Maintenance coefficient													
	iii. Y _{x/O2}													
	In cultivation of baker's yeast in a stirred and aerated tank, lethal agents are a	dded to the												
	fermentation medium to kill the organisms immediately. Increase in dissolv	ved oxygen												
	(DO) concentration upon addition of lethal agents is followed with the air	d of a DO												
4A.	• analyser and a recorder. Using the following data, determine the oxyg	en transfer	5											
	coefficient (k _L a) for the reactor. Saturation DO concentration is $C^* = 9 \text{ mg/I}$	J.												
	Time (min) 1 2 2.5 3 4 5													
	DO (mg/L) 1 3 4 5 6.5 7.2													
4P	What is the significance of K_{La} in gas-liquid mass transfer? Elucidate the	method for	5											
4D.	measuring k_La based on oxygen balance technique.		5											
	The first order reaction A $\dots \rightarrow$ B takes place in a spherical catalyst	pellet. The												
5A.	effectiveness factor due to diffusion limitations in the catalyst pores is 0.80. When the													
	same reaction is carried out in a catalyst pellet whose diameter is four times	larger, how												
	much larger is the total rate of reaction?													
	An industrial effluent stream is treated biologically by using a reactor	containing												
	immobilized cells in porous particles. Variation of rate of substrate removal w	ith particle												
	size is given in the following table.													
	i. What are the effectiveness factors for $D_p = 4 \text{ mm}$ and $D_p = 7 \text{ mm}$?													
	Bead dia, $D_p mm$ 1 2 3 4 5 7 10]												
5B.	Rate, V (mg/L.h) 300 300 250 200 150 100 50		6											
		-												
	ii. The following data were obtained for $D_p = 4$ mm at different substrate cond	centrations.												
	Assuming no liquid film resistance, determine the V _m and K _s for the microbial													
	system.													
	$[S_0], (mg/L) = 100 = 250 = 500 = 1000 = 2000$													
	Rate, V (mg/L.h) 85 200 360 630 1000													