Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

V SEMESTER B.TECH (BIOTECHNOLOGY)

END SEMESTER EXAMINATIONS JAN 2021 (REGULAR)

SUBJECT: BIOREACTION ENGINEERING (BIO 3153)

REVISED CREDIT SYSTEM

Time: 3 Hours

(04/02/2021)

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

You have been asked to convert sucrose into glucose and fructose using invertase enzyme in a batch fermenter. Explain how do you carry out this reaction 3 1A. as homogeneous and heterogeneous reaction system. Explain both reaction system with respect to productivity and stability of enzyme. Explain how to obtain experimental reaction rate expression for the given reaction 3 1B. system. A zero order gas reaction $2A \rightarrow 3R$ proceeds in a batch fermenter with 20% inerts and 10% R in a constant volume batch reactor with initial total pressure of 1 4 atm. The pressure of the reaction system raised by 30 % in 3 h. If the same 1C. reaction is carried out in a variable volume batch reactor for 2 h time what is the fractional change in volume and conversion at this time. For the following First order followed by zero order series reaction that is taking place in a batch fermenter n=1 $A \xrightarrow{K1} R \xrightarrow{K2} S$ 3 2A. Prove that (i) $\frac{CR, \max}{CA0} = 1 - K(1 - \ln K)$ (ii) $t \max = \frac{1}{k_1} \ln \frac{1}{K}$; where K=k2/(K1C_{A0}) The following biochemical reaction is carried out in a batch fermenter with Bacillus species to produce certain product P with stoichiometry $2A + 3B \rightarrow 5P$. 4 2B. Researcher has taken 4 M of A and 6 M of B at the start to carry out the above fermentation reaction. Researcher has suspected that above reaction obeys 2nd

	order reaction kinetics. Substantiate the following batch reactor data to 2nd order kinetics and find the rate equation.										
	Time, h	0	4	8	12	16	20	24			
	C _P , M	0.1	0.93	1.43	1.88	2.08	2.30	2.49			
	C _P = concent	tration	product								
2C	Aqueous biochemical reaction is carried out in a plug flow reactor with $v_0=2$ liter/min, $C_{A0}=100$ mmol/liter, $C_{R0}=10$ mmol/liter. This reaction is reversible and represented by $A \Leftrightarrow R$, $-r_A= (0.04 \text{ min}^{-1}) C_A - (0.01 \text{ min}^{-1}) C_R$. Find the volume of PFR required to achieve 85 % of maximum possible conversion.										3
3A.	Hydrolysis of palm oil is carried out in a PFR with free Lipase enzyme. The Substrate sucrose (S0=4M) is pumped at 0.1 L/h. The enzyme catalyzed reaction follows the Product inhibition kinetics. Find the volume of the reactor to achieve 55% conversion at steady state. Reaction: $S \rightarrow P$ Kinetics data: Vm=0.028 M/min, Km=0.23 M, KI=0.2 M $-r_s = \frac{V_{max} \cdot S}{(K_M + PK_I) + S}$										5
3B.	Three Mixe liter are cor M. Find the approach. the followin -r _A , M/min CA, M	d Flov intecte interr The ki g tabl 0.2 0.2	v reacto ed in ser netic da e. 7 0 0	rs of vol ies for p concent ta are ol .46 .4	ume V1: rocessin rations (otained f 0.64 0.6	=100 lit g liquid Ca1,Ca2 rom ba 0.72 0.8	ter, V2= d feed a and C, atch rea 0.	147 lite at 250 lit ₄₃ using ctor and <u>80</u> 0	rs and V ers/min, graphic d is pre 0.82 1.2	/3= 264 C _{A0} =1.2 al sented in 0.86 1.4	5
4A.	An Enzymatic reaction is taking place in a recycle reactor with Michealis- Menten kinetics: $-r_S = \frac{VmaxS}{(KM+S)}$, S=S ₀ (1-X _A). Prove the condition for optimum recycle ratio as $ln \frac{[Ro(1 - XAf) + 1]}{[(Ro + 1)(1 - XAf)]} = \frac{XAf}{Ro(1 - XAf) + 1}$										5
4B.	A particular biochemical product is produced using a free enzyme in a cascade reactor system of MFR & PFR. The substrate concentration at 1 M, v0=1 lit/min is pumped into the cascade reactor system. Volume of MFR is 10 liters and PFR is 0.9 liters. Reaction system follows the Michaelis-Menten kinetics with Vm=0.318 M/min, Km=0.23 M. Which reactor should be used as first reactor to achieve maximum final conversion?										5
5A.	Explain the following terminology in continuous fermenter (Chemostat) i. Critical dilution rate ii. Optimum dilution rate iii. Condition for steady state operation of chemostat										3

