V SEMESTER B.TECH. EXAMINATIONS MARCH 2021

SUBJECT: CHEMICAL REACTION ENGINEERING [CHE 3102]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.
- ✤ Use graphs wherever relevant.

1A.	Briefly discuss various theories of temperature dependency of a rate equation.						
1B.	Develop the performance equation for an ideal CSTR.						
2A.	 A continuous reactor is to be designed for a homogenous liquid phase reaction for the production of chloro ethane HCl+ C₂H₄ -> C₂H₅Cl It is first order with respect to HCl with k = 0.002 s⁻¹. With a flow rate of 0.02 m³/s. The feed concentration is 1 kmol/m³. i) What is the volume of a plug flow required to achieve 90% conversion? ii) Had this reaction been performed in a continuous flow stirred tank reactor would it be better? Justify. 	03+03					
2B.	 i) Prove that for an autocatalytic reaction A+R-> R+R where -r_A = k C_A C_R, the rate of disappearance of A is maximum when C_A=C_R ii) What are the applications of recycle reactor? 	03+01					
3A.	The elementary liquid phase reversible reaction $2A+B === R$ has $k_{1A} = 10 ^2/mol^2$. min and $k_{2A} = 0.5 \text{ min}^{-1}$. The feed consists of 1.4 mol A/liter and 0.8 molB/liter.i) Choose the best flow reactor scheme to carry out this reaction for 70% conversion of A.ii) Find the size of the best scheme of reactor/s when entering flow rate is 10 liter/min.	04+02					
3B.	Chemical A reacts to give R ($k_1 = 5 \text{ hr}^{-1}$) and R reacts to form S ($k_2 = 2\text{hr}^{-1}$). In addition, R decomposes to give T ($k_3 = 1\text{hr}^{-1}$), all reactions being elementary. If a solution containing 2 mol/liter of A is introduced into a CSTR, a space time of 46.4 minutes is required to obtain maximum of the desired product R. What is the maximum concentration of R?	04					

4A.	Derive an expression for conversion for a first order reaction, in a real CSTR modeled using									
	bypass and dead space. (Evaluation of model parameters not required).									
4B.	Discuss the various non ideal flow patterns which exist in process equipment.									03
	Calculate the mean conversion in a non-ideal reactor we have characterized by RTD									
	measurements for a first order, liquid phase, irreversible reaction in a completely									
	segregated fluid: A-> products. The specific reaction rate is 0.1 min ⁻¹ at 320 K. (Please turn									
	over for full table)									
			tm	nin E(t) 1	/min	X(t)				
			0	0		0				
			1	0.02		0.095				
			2	0.1		0.181				
			3	0.16		0.259				
4C.			4	0.2		0.33				03
			5	0.16		0.393				
			6	0.12		0.451				
		7		0.08		0.503				
		8		0.06		0.551				
		9		0.044	1	0.593				
		10		0.03		0.632				
		12		0.012	2	0.699				
			14	0		0.75				
	Aqueous A at a concentration $C_{A0} = 1000 \text{ mol/m}^3$ is introduced into a batch reactor where									
	it reacts away to form product R according to stoichiometry A-> R. The concentration of A									
	in the reactor is monitored at various times, as shown below:									
5A		C _A mol/m ³	ol/m ³		500	333	250	200]	
		t min		0	100	200	300	400		04+04
	i) Find rate of this reaction? Use any method.									
	ii) Find size of a PFR required for a conversion of 75% when volumetric flow rate is 100									
	liter/hr?									
F D	Derive a mechanism for this elementary reaction A+B-> R with a rate expression $-r_A = k C_A$								07	
28	CB									UZ
I	1				***					1