MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal)

V SEMESTER B.TECH. ONLINE PROCTORED END SEMESTER

EXAMINATIONS JAN 2021

SUBJECT: MASS TRANSFER II [CHE 3152]

REVISED CREDIT SYSTEM (30/01/2021)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

A dilute aqueous solution of ethanol is to be concentrated from 30 mass% to 85 mass% alcohol in a tray tower at 1 atm pressure. The feed rate is 6500 kg/h at its bubble point. The bottom product must not contain more than 3.5 mass% ethanol. The reflux is at the bubble point. Using Ponchon-Savarit method determine (i) the minimum reflux ratio, (ii) number of ideal trays if the reflux ratio is 1.5 and (iii) the reboiler and condenser heat duties. The enthalpy-concentration (kJ/kmol) and the equilibrium data at 1 atm are given as:

1A.	x, y H _L H _V	0 7540 48150	0.0417 7125 48250		6915	7097 73	281 0.37 97 7750 450 48450	0.477 8105 0 48631	0.61 8471 48694	0.779 8945 48950	1.0 9523	10
	x	0	0.00792	0.016	0.020	2 0.041	7 0.0891	0.1436	0.281	0.37	0.477	
	у	0	0.0850	0.158	5 0.191	0.304	0.427	0.493	0.568	0.603	0.644	
	x	0.61	0.641	0.706	0.779	0.86	0.904	0.95	1.0			
	у	0.703	0.72	0.756	0.802	0.864	0.902	0.9456	1.0			

A solution of carbon tetrachloride and carbon disulfide containing 50 wt% each is to be continuously fractionated at standard atmospheric pressure at the rate of 5500kg/h. The distillate product is to contain 92 wt % carbon disulfide, the residue 0.8 wt %. The feed will be 40 mol% vaporized before it enters the tower. A total condenser will be used, and the reflux will be returned at the bubble point. The equilibrium data $(x,y^* = mole fraction CS_2)$ is as follows:

2A.

$T(^{\circ}C)$	Х	у*
76.7	0	0
74.9	0.0296	0.0823
73.1	0.0615	0.1555
70.3	0.1106	0.2660
68.6	0.1435	0.3325
63.8	0.2585	0.4950

10

59.3	0.3908	0.6340
55.3	0.5318	0.7470
52.3	0.6630	0.8290
50.4	0.7574	0.8780
48.5	0.8604	0.9320
46.3	1	1

Determine (i) the product rates (ii) the minimum reflux ratio (iii) the number of theoretical trays required at the minimum reflux ratio (iii) the number of theoretical trays required at a reflux ratio equal to the twice the minimum and the position of the feed tray.

A feed of 1200 kg aqueous solution of pyridine per hour (50% by mass) is to be extracted with pure benzene to reduce the solute content in the raffinate to 3%. Determine the minimum solvent rate and the number of ideal stages required if the solvent rate is 1.2 times the minimum.

Water	r layer	Benzene layer				
Pyridine (mass %)	Benzene (mass %)	Pyridine (mass %)	Benzene (mass %)			
1.17	0	3.28	94.54 87.46 79.49			
3.55	0	9.75				
7.39	0	18.35				
13.46	0.15	26.99	71.31			
22.78	0.25	31.42	66.46			
32.15	0.44	34.32	64.48			
42.47	2.38	36.85	59.35			
48.87	3.99	39.45	56.43			
49.82	4.28	39.27	55.72			
56.05	19.56	48.39	40.05			

10

3A.

900 kg of crushed oil seeds (22% oil, 78% meal) is extracted in a three-stage cross-current unit using 600 kg of pure hexane in each stage. The equilibrium data are as follows:

	Overflo	w (100 kg) solu	tion	Underflow (100 kg) slurry				
	W _A (kg)	W _B (kg)	W _C (kg)	W' _A (kg)	W' _B (kg)	W' _C (kg)		
	0.3	99.7	0	67.2	32.8	0		
	0.45	90.6	8.95	67.1	29.94	2.96		
	0.54	84.54	14.92	66.93	28.11	4.96		
	0.70	74.47	24.83	66.58	25.06	8.36		
	0.77	69.46	29.77	66.26	23.62	10.12		
• [0.91	60.44	38.65	65.75	20.9	13.35		
	0.99	54.45	44.56	65.33	19.07	15.6		
	1.19	44.46	54.35	64.39	16.02	19.59		
	1.28	38.50	60.22	63.77	14.13	22.10		
	1.28	34.55	64.17	63.23	12.87	23.90		
	1.48	24.63	73.89	61.54	9.61	28.85		

(i) Calculate the fraction of oil extracted in a three-stage cross-current unit using PS method.

(ii) Also, calculate the fraction of oil extracted in a single stage contactor for the same volume (1800kg) of the solvent and comment on the result.

4B. Dilute ethanol-water solutions can be continuously rectified to give at best the mixtures containing 89.4 mole % ethanol at atmospheric pressure, since this is the composition of minimum boiling azeotrope in the binary system. Ethanol can be further purified either by using n-pentane as entrainer or ethylene glycol as solvent. Write short notes on the methods

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal)

	which uses the above-mentioned compounds in the purification of ethanol and comment on the most desirable method.	
5A.	Write a short note on any two solid-liquid contacting equipment which does not result in the clogging by fines with neat schematic diagram.	4
5B.	Discuss about any two types of membranes used in food industries with their exact application. Also comment on the modules used for such membranes in food industries.	4
5C.	Comment on any one membrane separation technique other than reverse osmosis for the desalination of water.	2
