Reg. No.

FIFTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2020/JANUARY 2021 SUBJECT: LINEAR CONTROL THEORY (ECE-3152)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer ALL questions.Missing data may be suitably assumed.
- 1A. Draw the SFG of the network given in Fig. Q1A and determine the transfer function of the system.
- 1B. Using block diagram reduction techniques, find the closed loop transfer function of the system shown in Fig. Q1B.
- 1C. Derive the expression for maximum overshoot of the unit step response of a second order under damped system.

(5+3+2)

- 2A. Write the differential equations governing the mechanical behaviour of the system shown in Fig.Q2A. Draw the FI and FV analogous circuits and verify by writing mesh and node equations.
- 2B. Unity feedback system with $G(S) = \frac{K(S+\alpha)}{(S+\beta)^2}$ is to be designed to meet the following specifications. Damping ratio=0.5; Natural frequency= $\sqrt{10}$ rad/sec; e_{ss} due to unit ramp input =0.1. Find the value of K, α, β
- 2C. The OLTF of a system is given by $G(S)H(S) = \frac{500}{S(S+6)(S+9)}$. Find the magnitude and phase angle of the system at the starting and end point of the corresponding polar plot.

(5+3+2)

3A. The characteristic polynomial of a system is given by: $S^7+9S^6+24S^5+24S^4+24S^3+24S^2+23S+15=0.$

Determine the location of the roots on S-plane and hence the stability of the system using Routh-Hurwitz criteria.

3B. What is an observable system? Find if the following system is i) controllable ii) observable.

	[0	1	[0	[0]	[0]
$\dot{x} =$	0	-2	1 x +	0 <i>u</i>	y = 0 x
	l1	-1	0]	L1]	l1]

3C. Determine the state transition matrix of the system described by $\dot{x} = \begin{bmatrix} -1 & 3 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{bmatrix} x$ (4+3+3)

- 4A. Sketch the Root Locus for a unity feedback system with OLTF G(S) = $\frac{K(S+0.5)}{S^2(S+4.5)}$ and comment on stability.
- 4B. Derive an expression for resonant peak and resonant frequency of a second order system in terms of ζ .

(5+5)

- 5A. Open loop transfer function of a system is given by $G(S) = \frac{5K}{S(S+2)}$ Design a lead compensator so that static velocity error constant is $20sec^{-1}$; Phase margin of atleast 55°; Gain margin of atleast 12dB
- 5B. Obtain the state space representation of the system shown in Fig.Q5B.

(6+4)

