Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) GRADE IMPROVEMENT EXAMINATIONS, JAN 2021

SUBJECT: CONTROL SYSTEMS DESIGN [ELE 4013]

REVISED CREDIT SYSTEM

Time	e: 3 Hours Dat	te: 07 January 2021	Max. Marks: 50
Instructions to Candidates:			
	 Answer ALL the questions. 		
	Missing data may be suitably ass	sumed.	
1A.	For the unity feedback system	with $G(s) = \frac{6}{(1-s)(1-s)}$, design a	stable PID
	controllers using 7eigler Nichols t	uning method	(05)
1D	Write the procedure for the design of PI controller using root locus method. Draw a		
ID	circuit for realizing the PI controller.		(05)
2A.	Write the procedure for the design a lead compensator using frequency domain		cy domain
	methods		(05)
2B.	For the system $\dot{x} = \begin{bmatrix} -3 & -1 \\ -2 & -2 \end{bmatrix} x +$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} u$, Check the controllability and obse	ervability
	Explain the significance of state Co	ontrollability	
	in design.		(05)
3A.	A linear continuous time system is	s represented by the state model	
	$\dot{x} = \begin{bmatrix} -2 & 1 \\ 2 & -2 \end{bmatrix} x + \begin{bmatrix} 3 \\ 2 \end{bmatrix} u, y = \begin{bmatrix} 2 \\ 2 \end{bmatrix} x$	3]x , Design a state feedback controller	to vield a
	[0, -3] $[2]$	ng time loss than 1 sec. Use coefficient m	otching or
	Ackerman's formula		(0.5)
2R	A linear continuous time system is	s represented by the state model	(00)
50.	r_{-3} 11 r_{11}	s represented by the state model	
	$\dot{x} = \begin{bmatrix} 3 & 1 \\ -2 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix}$	x , The unit response of the plant has to h	lave a peak
	overshoot of 21% and a settling t	ime of 2 sec. Design an observer which i	s 10 times
	faster than the plant response. Use	e coefficient matching or Ackerman's for	mula. <i>(05)</i>
4A.	For the linear time invariant	system represented by the state ed	$juation\dot{x} =$
	$\begin{bmatrix} -1 & 1 \\ x \end{bmatrix} x$, assess the stabilit	v of the equilibrium point using Lyapun	ov stability
	$\begin{bmatrix} -1 & -1 \end{bmatrix}$ What is meant by	houndedness and ecomptetically with	respect to
	Lyanunov stability?	boundedness and asymptotically with	
1 D	Employ stability:		
4D.	system ii) adaptive control sch	eme using MIT rule and Lyapunov rule.	<i>(05)</i>

5A. For the system given in Fig.Q5A, predict the possibility of a limit cycle. If it exists determine the amplitude and frequency. Also investigate the stability of the limit cycle.

5B. Design an optimal feedback control law that minimizes the performance measure using reduced matrix Riccati equation

$$J = \frac{1}{2} \int_0^\infty 2x_1^2 + 2u^2) dt, \quad \text{for the system described by}$$
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \quad x(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$
(05)

(05)