Reg. No.

(A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) GRADE IMPROVEMENT EXAMINATIONS, JAN 2021

POWER SYSTEM OPERATION & CONTROL [ELE 4008]

REVISED CREDIT SYSTEM

	F	REVISED CREDIT SYSTEM		
Time	: 3 Hours	Date: 07 January 2021	Max. Ma	rks: 50
Instru	 Answer ALL the questions. Missing data may be suitably 	assumed.		
1A.		the following data: $X_d = 1$, $X_q = 0.6$ pu; X_d^1 a function of time when at t=0, $E_{fd}=1$ is	-	(05)
1B.	A synchronous is in the stead i _d , i _q , v _d , v _q .	ly state with δ=75°. V _a =1∠0 and I _a = 1∠-3	30°. Find	(03)
1C.	For an unloaded radial line obtain the voltage profile and current profile equations.		(02)	
2A.	0.1 pu. The generator is in st	connected to infinite bus through a reac eady state with the power output $P_G = 0$ fault and the circuit breakers at the two ssion for $V_a(t)$.	.5pu and	
	Assume $X_d = Xq = 0.9$, $X_d^1 = 0.9$	2, r =0, T $_{do}$ ¹ = 2 secs, δ remains constant	t.	(05)
2B.	-	wer requirements of 400 km symetre the formula used. β =0.0013 rad/km.	ical line	(03)
2C.	Starting from the park's volt state phasor diagram of a ge	age equations for a generator, derive th nerator.	e steady	(02)
3A.	Derive the expression and p line on no load.	lot the current profile of a 400Km sym	metrical	(05)
3B.	occurs at the terminals of the	der no load conditions. A 3-phase sho e alternator. Neglecting damper currents e current starting from the differential o	find the	(05)
4A.		gram representation of an alternator co d PSS, Explain the role of PSS in dampi		(03)

- **4B.** A 500 KV line has the following parameters: β =0.0013 rad/km; The line is 600 km long and transfers power between two sources. Determine the power angle characteristics for a power transmission of 1.4P₀ for the following cases. a) shunt compensation b) series compensation
- **4C.** An electric power system with two plants has the following transmission loss equation

$$P_L = (0.5)10^{-3} P_1^2 + (0.2)10^{-3} P_2^2$$

The fuel cost model are

$$F_1 = 8.52P_1 + 0.0015 P_1^2$$

$$F_2 = 8.65 P_2 + 0.00056 P_2^2$$

Given that the incremental cost of power delivered is 10.9, obtain the optimal power generations and the corresponding load power. (02)

5A. A two area system has the following data

Area	Rated Capacity (MW)	R (Hz/per unit MW)	D (per unit MW per Hz
А	500	2.5	0.01
В	2000	2.0	0.01

There is sudden increase in load of 30MW in area A, find a) steady state frequency deviation b) Tie-line power flow c) Power generated by each areas.

5B. Calculate the loss coefficient for the system shown in fig.5B. Select a base MVA of 100. Calculate the penalty factors $L_1 \& L_2$ and the corresponding power loss. The two plants have an optimum loading of P_1 =120 MW and P_2 =100MW. The fuel cost models for the two plants are $F_1 = \alpha + 6.69P_1 + (4.7675)10^{-3} P_1^2$ %/hr

 $F_2 = \alpha + 6.69P_2 + \gamma P_2^2$ \$/hr

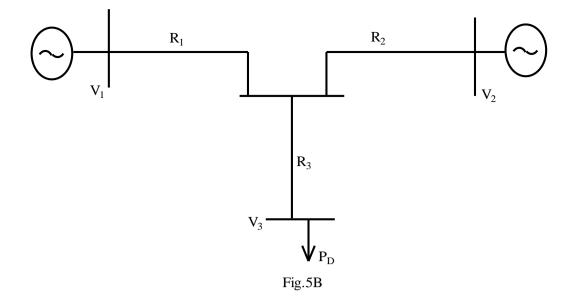
Where P1 and P2 are in MW.

Find also λ and γ .

Assume $V_1 = V_2 = V_3 = 1$ pu.

R₁=0.0025pu

R₃=0.03pu


PF₁=0.85

PF₃=0.75

(05)

(05)

(04)

