

SIXTH SEMESTER B.TECH. (ELECTRONICS & INSTRUMENTATION ENGG.) ONLINE GRADE IMPROVEMENT/MAKE-UP EXAMINATIONS, AUGUST - 2021

DIGITAL CONTROL SYSTEMS [ICE 4051] [P.E-II]

TIME: 2 HOURS

12-08-2021

MAX.MARKS: 40

Instructions to candidates: Answer any FOUR FULL questions.

Missing data may be suitably assumed.

Q1. A. Obtain the pulse transfer function $C^*(s)/R^*(s)$ for the system shown in Figure.Q1.

B. Obtain the unit-impulse and unit-step responses of a sampled data system, whose forward transfer function (in s-domain) is given as:

$$GH(s) = \frac{1 - e^{-s}}{s(s+1)}$$

[5 + 5]

Q2. A. Given that the characteristic polynomial of a system, $f(z) = z^4 - 1.2z^3 + 0.07z^2 + 0.3z - 0.08$, check the stability of the system using Jury's Test. Also, verify the same using bilinear transformation method.

B. Investigate the stability of the system $GH(s) = \frac{K(1-e^{-s})}{s^2(s+2)}$ using root locus technique. Assume T = 400ms.

[5+5]

Q3. A. For the system shown in Figure.Q5, obtain the steady state error constants Kp, Kv and Ka, assuming T =1s and e(t) = 1 (t ≥ 0).

B. Express the following difference equation in its Jordan and Controllable Canonical forms: y(k+3) + 7y(k+2) + 5y(k+1) - 4y(k) = u(k+1) + 3u(k)

[5 + 5]

Q4. A. Obtain the discrete-time model of the system whose continuous-time state-space model is given as follows:

$$A = \begin{bmatrix} -2 & 2 \\ 1 & -3 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 5 \end{bmatrix}^T \quad C = \begin{bmatrix} 2 & -4 \end{bmatrix} \quad D = \begin{bmatrix} 6 \end{bmatrix}$$

Assume T = 20ms.

B. Compute the free-response x(k) at k = 3 using Caley-Hamilton theorem. Given:

$$x(k+1) = Fx(k),$$
 $x(0) = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^T$ and $F = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 3 & 5 \\ 0 & 0 & 1 \end{bmatrix}$
[6+4]

Q5. A. For the system given below, find the closed form response, $X(k+1) = \begin{bmatrix} 1.5 & -1 \\ 1 & -1 \end{bmatrix} X(k) + \begin{bmatrix} 3 \\ 2 \end{bmatrix} U(k)$

$$Y(k) = \begin{bmatrix} -3 & 4\\ -1 & 1 \end{bmatrix} X(k) + \begin{bmatrix} -2\\ 0 \end{bmatrix} U(k)$$

when:

$$X(0) = \begin{bmatrix} -5\\1 \end{bmatrix}$$
 and $U(k) = \left(\frac{1}{2}\right)^k$

B. Diagonalize the following matrix:

$$A = \begin{bmatrix} -4 & 2 & -2 \\ 2 & -7 & 4 \\ -2 & 4 & -7 \end{bmatrix}$$
[5+5]

Q6. A. Given a system represented in state-space form as follows:

$$X_{k+1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -6 & -1 \end{bmatrix} X_k + \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} u(k)$$
$$y_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X_k$$

Then,

- (i) Convert the system model to pulse transfer function [Assume all I/C = 0]
- (ii) State Transition matrix $\Psi(k)$
- **B.** The block diagram of a speed control system with a dc motor is shown in Fig. Q 6B:

Fig. Q 6B

The system parameters are also given as follows:

	-		
Term	Definition	Value	Unit
Ka	Motor Torque Quotient	0.345	
K _b	Motor Back EMF constant	0.345	
R	Motor Armature resistance	1	Ohms
L	Motor Armature inductance	1	Milli-Henry
J	Mol of (Rotor + Load)	1.14	In 10 ^ (-3)
В	Viscous Friction (Rotor + Load)	0.25	
Т	Sampling period	0.001	S

Also, the mathematical (discrete-time) model of the digital microcontroller in the system shown in Fig Q6B is approximated as follows:

$$G_c(z) = 1 + (147.638) \left(\frac{z+1}{z-1}\right) T$$

Using root-locus method, determine the stability of the forward open-loop system.

[4+6]
