

VII SEMESTER B.TECH. (COMMON TO ALL)

ONLINE PROCTURED END SEMESTER EXAMINATIONS- MARCH 2021

SUBJECT: ENGINEERING ECONOMICS AND FINANCIAL

MANAGEMENT [HUM 4002]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.
- ✤ Interest factor table is provided in the last page (else use formulae).

1A.	Two possible routes for a power line are under study. Data on the routes are as follows:							
	Around the Lake Under the Lake							
	Length 15Kms 5Kms							
	First cost	\$ 5000/km	\$ 25000/km					
	Maintenance	\$ 200/km/year	\$ 400/km/year					
	Useful life 15 years 15 years							
	Salvage value\$ 3000/km\$ 5000/km							
	Yearly power loss \$ 500/km \$ 500/km							
	Annual property taxes2% of the first cost2% of the first cost							
	If 12% interest is used, should the power line be routed around the lake or under the lake? Use Annual worth method.							
1 B .	A cooling-water pumping station at the LCRA plant costs \$600,000 to construct, and (
	it is projected to have a 25-year life with an estimated salvage value of 12% of the							
	construction cost. However, the station will be book-depreciated to zero over a							
	recovery period of 30 years. Calculate the annual depreciation charge for years 4, 10,							
	and 25, using (a) Straight line depreciation and (b) DDB depreciation.							
2A.	A railroad branch line to a	missile site is to be constru	ucted. It is expected that the	(05)				
	railroad line will be used for 15 years, after which the missile site will be removed							
	and the land turned back to agricultural use. The railroad track and ties will be							

	removed at that time.						
	In building the railroad line, either treated or untreated wood ties may be used.						
	Treated ties have an installed cost of \$6 and a 10-year life; untreated ties are \$4.50						
	with a 6-year life. If at the end of 15 years the ties then in place have a remaining						
	useful life of 4	4 years or	more, they will be used by t	he railroad elsewher	e and have an		
	estimated salv	vage valu	e of \$3 each. Any ties that	are removed at the	e end of their		
	service life, o	r too clos	se to the end of their service	life to be used elsev	where, can be		
	sold for \$0.50	each.					
	Determine the	e most ec	onomical plan for the initial r	ailroad ties and thei	r replacement		
	for the 15-yea	r period.	Make a present worth analys	is assuming 12% int	erest.		
2B.	A 50 HP mot	or is requ	nired to drive a pump to remo	ove water from a tur	nnel. The unit	(05)	
	will be needed	d for a pe	riod of 4 years.				
	Two alternativ	ves are ur	nder consideration.				
	Alternative A	calls for	the construction of a power	line and purchase	of the electric		
	motor at a tot	al cost o	f \$4900. The salvage value of	of this equipment at	fter 4 years is		
	estimated to b	e \$700.					
	The cost of t	he power	r per hour of the operation	is estimated to be S	\$2.94 and the		
	maintenance is estimated as \$420 per year.						
	Alternative B calls for purchase of diesel engine pump set at a cost of \$1925 and it						
	will have no salvage value at the end of 4 years period. The cost of diesel per hour of						
	operation is estimated at \$1.47 maintenance is estimated at \$0.53 per hour operation						
	and the cost of wages chargeable when the engine runs is \$2.8 per hour.						
	How many hours per year the two machines have to run so that the two alternatives						
	incur equal costs. If the no. of hours of operation is estimated at 100 hours which						
	alternative is more economical? Take interest rate at 12% per year.						
3A.	For equipment that has a first cost of \$10,000 and the estimated operating costs and year-end salvage values are shown below, determine the economic service life at 12% per year.					(05)	
		Year	Operating Cost \$(Year)	Salvage Value \$			
		1	-1,000	7,000			
		2	-1,200	5,000			
		3 4	-1,500 -2,000	3,000			
		5	-3,000	2,000			
3B.	State the Lav	v of Den	nand. With examples, discus	ss the exceptions for	or the law of	(05)	
	Demand.						

4A.	An engineer compared the following four machines to choose the best. All of them						(05)		
	have 10 years of service life. At MARR of 12%, which machine should be selected								
	based on Incremental ROR analysis?								
	Machines								
	$\begin{array}{ c c c c c c c c c c c c c c c c c c $								
	Annual	-70000	-61000	-68000	-64000				
	cost per								
	year Annual	80000	80000	82000	80000				
	savings	00000	00000	02000	00000				
	ROR %	18.6	23.1	20.8	23.4]			
		· 1		1 1					
4 B .	Anita Tahan	1, who owns	a travel age	ency, bought	t an old house	e to use as her business	(05)		
	office. She found that the ceiling was poorly insulated and that the heat loss could be								
	cut significantly if 6 inches of foam insulation were installed. She estimated that with								
	the insulation	on, she cou	ld cut the	heating bill	l by \$40 pe	r month and the air-			
	conditioning	g cost by \$2	25 per mont	h. Assumin	g that the su	ummer season is three			
	months (Jun	ne, July, and	August) of	the year ar	nd that the w	vinter season is another			
	three months (December, January, and February) of the year, how much can Anita								
	spend on insulation if she expects to keep the property for five years? Assume that								
	neither heating nor air-conditioning would be required during the fall and spring								
	seasons. If she decides to install the insulation, it will be done at the beginning of								
	May. Anita's interest rate is 12% compounded monthly.								
5A.	A FMCG company is experiencing a surge in the demand and decides to expand its						(05)		
	facility after	five years. I	t forecasts th	nat \$500,000) would be ne	eded in the fifth year to			
	purchase lar	nd and consta	ruct factory	building an	d \$250,000 in	n the following year to			
	purchase necessary machines. In order to meet these expenses, the company is								
	planning to set aside an equal amount every quarter from its profits. However after								
	three years, the company doubles the savings but invests once in six months.								
	Determine the amount the company has to save if the interest rate is 11% per annum								
	compounded quarterly during the first three years 11% n a compounded monthly								
	during the next two years and 11% n a compounded semiannually during the last one								
	veor	one en o youn	<i>f</i> und 1170 p.	u. compoun	aca semianit	any during the last one			
	year.								

- Current Ratio 1.4
- Acid Test Ratio 1.2
- Current Liabilities Rs. 1,600
- Inventory Turnover Ratio 8

Interest rate for 12%

12%	Compound Interest Factors							12%	
	Single Payment		Uniform Payment Series				Arithmetic Gradient		
	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Compound Amount Factor	Present Worth Factor	Gradient Uniform Series	Gradient Present Worth	
п	Find F Given P F/P	Find P Given F P/F	Find A Given F A/F	Find A Given P A/P	Find F Given A F/A	Find P Given A P/A	Find A Given G A/G	Find P Given G P/G	п
1	1.120	.8929	1.0000	1.1200	1.000	0.893	0	0	1
2	1.254	.7972	.4717	.5917	2.120	1.690	0.472	0.797	2
3	1.405	.7118	.2963	.4163	3.374	2.402	0.925	2.221	3
4	1.574	.6355	.2092	.3292	4.779	3.037	1.359	4.127	4
5	1.762	.5674	.1574	.2774	6.353	3.605	1.775	6.397	5
6	1.974	.5066	.1232	.2432	8.115	4.111	2.172	8,930	6
7	2.211	.4523	.0991	.2191	10.089	4.564	2.551	11.644	7
8	2.476	.4039	.0813	.2013	12.300	4.968	2.913	14.471	8
9	2.773	.3606	.0677	.1877	14.776	5.328	3.257	17.356	9
10	3.106	.3220	.0570	.1770	17.549	5.650	3.585	20.254	10
11	3.479	.2875	.0484	.1684	20.655	5.938	3.895	23,129	11
12	3.896	.2567	.0414	.1614	24.133	6.194	4.190	25.952	12
13	4.363	.2292	.0357	.1557	28.029	6.424	4.468	28.702	13
14	4.887	.2046	.0309	.1509	32.393	6.628	4.732	31.362	14
15	5.474	.1827	.0268	.1468	37.280	6.811	4.980	33.920	15
16	6,130	.1631	.0234	.1434	42,753	6,974	5.215	36.367	16
17	6.866	.1456	.0205	.1405	48.884	7.120	5.435	38.697	17
18	7.690	.1300	.0179	.1379	55.750	7.250	5.643	40.908	18
19	8.613	.1161	.0158	.1358	63.440	7.366	5.838	42.998	19
20	9.646	.1037	.0139	.1339	72.052	7.469	6.020	44.968	20
21	10.804	.0926	.0122	.1322	81.699	7.562	6.191	46.819	21
22	12.100	.0826	.0108	.1308	92.503	7.645	6.351	48.554	22
23	13.552	.0738	.00956	.1296	104.603	7.718	6.501	50.178	23
24	15.179	.0659	.00846	.1285	118.155	7.784	6.641	51.693	24
25	17.000	.0588	.00750	.1275	133.334	7.843	6.771	53.105	25
26	19.040	.0525	.00665	.1267	150.334	7.896	6.892	54.418	26
27	21.325	.0469	.00590	.1259	169.374	7.943	7.005	55.637	27
28	23.884	.0419	.00524	.1252	190.699	7.984	7.110	56,767	28
29	26.750	.0374	.00466	.1247	214.583	8.022	7.207	57.814	29
30	29.960	.0334	.00414	.1241	241,333	8.055	7.297	58,782	30

(05)