

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER ADDITIONAL OPE EXAMINATIONS, MARCH 2021 SUBJECT: NATURAL GAS ENGINEERING [CHE 4001] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer **ALL** the questions. Read the questions carefully.
- ✤ Missing data may be suitably assumed.
- ✤ Refer formulae sheet

(A Constituent Institution of MAHE, Manipal)

1A.	Explain the terminology proved reserves and potential resources clearly	3
1B.	From the basic definitions show that; (a) $E = 35.3 \frac{p}{zT}$ (scf/ft ³)	
	(b) $B_g = 0.0283 \frac{zT}{p} (\text{ft}^3/\text{scf})$	4
1C.	Prove that the compressibility of an non-ideal gas, $C_g = \frac{1}{p} - \frac{1}{z} \frac{\partial z}{\partial p}$	3
2A.	Define real gas pseudo pressure along with units. Explain each term clearly	2
2B.	A 0.70 specific gravity natural gas flows from a 2-inch pipe through a 0.8-inch orifice-type choke at very high Reynolds number. The upstream pressure and temperature are 600 psia and 75 °F, respectively. The downstream pressure is 150 psia. Viscosity of gas is 0.01245 cp. The gas-specific heat ratio is 1.25. (i) What is the expected daily flow rate? (ii) Calculate the downstream temperature considering z_{up}/z_{outlet} as 1 (iii)Is formation of hydrates a potential problem at calculated downstream pressure?	5
2C.	Discuss various ways in which water content of natural gas streams is estimated?	3
3A.	The well is producing at a stabilized bottom-hole flowing pressure of 2400 psi. The wellbore radius is 0.4 ft. The following data is available k = 0.06 d, h = 20 ft, $T = 700 ^{0}$ R, pe = 4400 psi, re = 1000 ft, s = 0, D = 0, $\overline{\mu}$ = 0.0269 cp, \overline{Z} = 0.827 m(p) at reservoir pressure (pe) is 1072210926.41 psi ² /cp m(p) at wellbore pressure (pwf) is 409978929.11 psi ² /cp Calculate the gas flow rate in Mscf/Day at pwf = 2400 psia using the (a) pressure squared approach (b) m(p) approach (c) Compare the result obtained (a) and (b), summarize the reason if any discrepancy	5

3B.	Explain the method to estimate z-factor of natural gas from the experiments using	
	relevant equations	3
3C.	Draw and explain the nature of plots for tubing pressure profile. Clearly mention the	
	parameters of x-axis and y-axis clearly.	2
4A.	Explain various types of gas sweetening process used in natural gas industry and	
	describe gas sweetening process by absorption using basic flow diagram?	5
4B.	Calculate the gas capacity (q _{st}) in MMscfd for oil/gas separator using the Sounders-	
	Brown empirical equation; for the diameter of 50.8 cm vertical separator using	
	following conditions. Operating pressure: 850 psig	
	Operating temperature: 100 °F	
	z=0.8803, ρ_g = 3.88 lb _m /ft ³ , ρ_L = 46.11 lb _m /ft ³ , K=0.205	3
4C.	How can you avoid flooding in existing gas dehydration or gas sweetening	
	(absorption) towers in gas processing plants?	2
5A.	a. Derive basic Inflow Performance Relationship (IPR) equation for steady state case	
	using 'p' approach. Solve for incompressible fluid using the following boundary	
	conditions:	
	P(rw)=pw and P(re)=pe	
	Where rw is the bore radius in ft, re reservoir drainage area in ft.	
	State assumptions clearly.	
	b. Draw radial pressure profile for the above case.	4
5B.	List and discuss various types of natural gas resources	3
5C.	List the (6) equipment or utilities, where the chemical additives are added in oil/gas	
	processing fields	3

Formulae Sheet

☑ Pseudosteady state flow IPR for radial flow gas reservoir using pressure square approach and pressure approach

$$q = \frac{kh \left\lfloor m(p_e) - m(p_{wf}) \right\rfloor}{1424T \left[\ln \left(\frac{0.472r_e}{r_w} \right) + s + Dq \right]}$$
$$q = \frac{kh \left[p_e^2 - p_{wf}^2 \right]}{1424\overline{\mu} \ \overline{z} \ T \left[\ln \left(\frac{0.472r_e}{r_w} \right) + s + Dq \right]}$$
$$q = \frac{kh \left[p_e - p_{wf} \right]}{141.2X10^3 \overline{B}_g \ \overline{\mu} \left[\ln \left(\frac{0.472r_e}{r_w} \right) + s + Dq \right]}$$

G Gas Reservoir Deliverability: Empirical Models (Forchheimer and Backpressure model) $\overline{p}^2 - p_{wf}^2 = Aq + Bq^2$ $q = C(\overline{p}^2 - p_{wf}^2)^n$

☑ Wellbore Performance: The Average Temperature and Compressibility Factor Method

$$p_{wf}^{2} = Exp(s)p_{hf}^{2} + \frac{6.67X10^{-4}[Exp(s) - 1]fq_{sc}^{2}\overline{z}^{2}\overline{T}^{2}}{d_{i}^{5}\cos\theta} \qquad s = \frac{0.0375\gamma_{g}L\cos\theta}{\overline{z}\overline{T}}$$
$$f = \left[\frac{1}{1.74 - 2\log\left(\frac{2\varepsilon}{d_{i}}\right)}\right]^{2}$$

☑ Choke Performance: Gas Passage for Subsonic and Sonic flow

$$Q_{sc} = 1248CAP_{up}\sqrt{\frac{k}{(k-1)\gamma_g T_{up}}} \left[\left(\frac{P_{dn}}{P_{up}}\right)^{\frac{2}{k}} - \left(\frac{P_{dn}}{P_{up}}\right)^{\frac{k+1}{k}} \right]$$
$$Q_{sc} = 879CAP_{up}\sqrt{\left(\frac{k}{\gamma_g T_{up}}\right)\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}}$$

☑ Density of liquid and Sounders-Brown empirical equation for gas capacity of oil/gas separators

$$q_{st} = \frac{2.4D^2 Kp}{z(T+460)} \sqrt{\frac{\rho_L - \rho_g}{\rho_g} \rho_L} = 62.4 \frac{141.5}{131.5 + \text{CSG}(\text{units}^0 \text{API})}$$

$$q_L = \frac{1440V_L}{t}$$

☑ Pseudocritical Properties

 $P_{pc} = 709.604 - 58.718\gamma_g$ $T_{pc} = 170.491 + 307.344\gamma_g$

Compressibility Factor: Brill and Beggs' Correlation Constants

$$A = 1.39(T_{pr} - 0.92)^{0.5} - 0.36T_{pr} - 0.1$$

$$B = (0.62 - 0.23T_{pr})P_{pr} + \left(\frac{0.066}{T_{pr} - 0.86} - 0.037\right)P_{pr}^{2} + \frac{0.32P_{pr}^{6}}{10^{9(T_{pr} - 1)}}$$

$$C = 0.132 - 0.32\log(T_{pr})$$

$$D = 10^{(0.3106 - 0.49T_{pr} + 0.1824T_{pr}^{2})$$