Reg. No.

SEVENTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2020/JANUARY 2021 SUBJECT: ADVANCED EMBEDDED SYSTEM DESIGN (ECE - 4001)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer ALL questions.Missing data may be suitably assumed.
- 1A. Justify the need of an operating system in the embedded system. Describe the services provided by the OS.
- 1B. Write the process data structure. What is the role of process control block in OS?
- 1C. Draw the process states with time line diagram for the given process trace. The starting address of Process A, Process B and Process C are 5000, 8000 and 12000 respectively. The dispatcher starting address is 100.

5000	27 12	004
5001	28 12	005
5002		Time-out
5003	29	100
5004	30	101
5005	31	102
Time-out	32	103
100	33	104
101	34	105
102	35 5	006
) 103	36 5	007
104	37 5	008
2 105	38 5	009
8000	39 5	010
8001	40 5	011
8002		Time-out
8003	41	100
I/O request	42	101
/ 100	43	102
3 101	44	103
102	45	104
) 103	46	105
104	47 12	006
2 105	48 12	007
12000	49 12	008
12001	50 12	009
5 12002		010
12003		011
		Time-out

(4+3+3)

- 2A. What are the benefits of RTOS over super loop? Explain.
- 2B. What is the role of suspend state in process state diagram? Write the difference between ready suspend and blocked suspend. Give the characteristics of suspended state.
- 2C. Explain multithreading. With the help of a diagram differentiate user level thread, kernel level thread.

(4+3+3)

- 3A. Write the difference between os_dly_wait () and os_itv_wait() functions ? Write an RTX code to blink the LED for every second using os_itv_ () function.
- 3B. What is Thumb-2 instruction? What are the advantages of Thumb-2 instructions in Cortex-M3 processor over traditional ARM?
- 3C. Explain the given function. If we substitute the data as 0XFFFFFFFF in line 5, what is change we are going to have?

Line	1.	int	main((void)	{
	1.	ΠI	manny	(voiu)	1

Line 2:	UART0_Init();
Line 3:	LPC_PINCON->PINSEL0 &= 0xFF0000FF;
Line 4:	LPC_PINCON->PINSEL1 &= 0xFFF3FFFF;
Line 5:	LPC_GPIO0->FIODIR \mid = 0x02000FF0;
Line 6:	LPC_GPIO0->FIOSET = 0x00000FF0;
Line 7:	<pre>os_sys_init_prio (init_task, 10); }</pre>

(4+3+3)

- 4A. Complete the **Table 4A** using the data given for the 5 processes. Draw the timing diagram with comparative analysis for all the scheduling.
- 4B. Write an RTX code for LPC1768 using an event function to multiply the 2 numbers in one task and display the product in another task by changing the priority.

(5+5)

(4+3+3)

- 5A. Write an RTX code for LPC1768 using semaphore to display the message "RELAY" and "LED" while relay and LED are operating.
- 5B. What is dead lock? For the given instruction sequence given in Fig. 5B, explain deadlock with the help of a diagram.
- 5C. Explain in brief the AMBA based system.

Process	Α	В	С	D	E
Arrival time	0	2	3	5	7
Service time (Ts)	3	2	4	4	3
	F	CFS			
Finish Time					
TAT (Tt)					
Tt/ Ts					
	RR v	with q=2	2		
Finish Time					
TAT (Tt)					
Tt/ Ts					
		SPN			
Finish Time					
TAT (Tt)					
Tt/ Ts					

TABLE 4A

Process P	Process Q	
•••		
Get A	Get B	
•••		
Get B	Get A	
• • •		
Release A	Release B	
Release B	Release A	

Fig. 5B