Reg. No.

SEVENTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2020/JANUARY 2021 SUBJECT: ERROR CONTROL CODING (ECE - 4024)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Verify whether H={1,3,7,9} mod 20 is a group under multiplication. Determine the order of 3 and 9
- 1B. Prove $\{f(x)\}^{2^i} = f(x^{2^i})$, if f(x) is a polynomial with coefficients over GF(2)
- 1C. Determine the polynomial whose roots are α^7 , α^{11} , α^{13} , and α^{14} , over GF(2⁴) using p(x)=x⁴+x+1

(3+3+4)

- 2A. A linear block decoder circuit is as shown in Figure 2A. Determine
 - i. (n, k) & code rate
 - ii. G & H matrices in systematic form
 - iii. Minimum distance of code
 - iv. Error detection and error correction capability of the code
 - v. Possible code words & weight distribution
 - vi. Error pattern and corresponding syndrome
 - vii. Encoder circuit
 - viii. Number of undetected error patterns
 - ix. If the received vector is 10000001, determine the syndrome and the corrected code vector.
- 2B. Draw the cyclic Hamming decoding circuit using $g(x) = 1+x^2+x^5$. Modify the circuit to implement (26, 21) shortened decoder. Explain and show the computations to device the circuit.

(5+5)

- 3A. Using $p(x)=x^4+x+1$, design following circuits to
 - (i) Multiply any arbitrary field element from $GF(2^4)$ by α^2 ,
 - (ii) Multiply two arbitrary field element from $GF(2^4)$.
- 3B. Design the Chien's searching algorithm for a triple error correcting BCH code over GF(2⁴), if the error location polynomial is $1 + \alpha^2 x^2 + \alpha^8 x^3$

(5+5)

4A. A triple error correcting BCH code of length 15 is used, and if the received vector is $r(x)=x+x^9$, Determine the syndromes, error location polynomial, error polynomial and corrected code polynomial.

4B. The convolution encoder is defined by $g^{(1)}=(110)$ and $g^{(2)}=(101)$. Represent the encoder in state diagram, tree diagram and trellis diagram for 6 time slots. Using the trellis diagram determine the code word for the message (010010).

(6+4)

(5+5)

- 5A. A triple error correcting RS code of length 15 is used. The syndrome computed for received vector r(x) is S={ α^4 ,1, α^{10} , α^7 ,0, α^{14} } and error location polynomial obtained is $\sigma(x)$ =1+ $\alpha^2 x + \alpha^{11} x^2 + \alpha^5 x^3$, that has roots as α^5 , α^8 , and α^{12} . Determine the error polynomial and corrected code polynomial.
- 5B. Determine the generator sequences for a convolutional encoder shown in **Figure 5B**. Determine the encoder generator matrix G. The encoder is fed with the two input sequences $u^{(1)}=(1\ 0\ 0\ 1)$ & $u^{(2)}=(0\ 1\ 1\ 0)$. Compute the output sequence of the encoder (i) applying convolution operation, (ii) using G matrix.

Figure 5B