

## INTERNATIONAL CENTRE FOR APPLIED SCIENCES MAHE, MANIPAL B.Sc. (Applied Sciences) in Engg. End – Semester Theory Examinations – May 2021 I SEMESTER – MATHEMATICS-I (IMA 111) (Branch: Common to all)

| Ti           | me: 3 Hours                                                                                                    | Date: 26 May 2021                                                          | Max. Marks: 100                                |   |  |
|--------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------|---|--|
|              | <ul> <li>✓ Answer Any five full questions.</li> <li>✓ Missing data, if any, may be suitably assumed</li> </ul> |                                                                            |                                                |   |  |
| 1A.          |                                                                                                                | e (300, 2.4771), (304, 2.4829)<br>agrange's method, Find log <sub>10</sub> |                                                | 6 |  |
| 1 <b>B</b> . | Find the cubic polynomial using finite difference method which takes the                                       |                                                                            |                                                |   |  |
|              | following values:                                                                                              |                                                                            |                                                |   |  |
|              | y(1) = 24, y(3) = 120, y(5) =                                                                                  | 336, and $y(7) = 720$ . Hence,                                             | obtain the value of                            | 6 |  |
|              | <i>y</i> (8).                                                                                                  |                                                                            |                                                |   |  |
| 1C.          | Find the interval of converger                                                                                 | the series $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x}{4}$               | $\frac{4}{4} + \frac{x^5}{5} - \dots \infty$ . | 8 |  |
| 2A.          | Find the angle of intersection of the curves $r = 2 \cos \theta$ and $r = 1 + \cos \theta$                     |                                                                            |                                                | 6 |  |
| <b>2B.</b>   | Evaluate $\lim_{x \to 0} \frac{x \sin x}{(e^x - 1)^2}$                                                         |                                                                            |                                                | 6 |  |
| 2C.          | Find the coordinates of the center of curvature at $(at^2, 2at)$ on the parabola                               |                                                                            |                                                |   |  |
|              | $y^2 = 4ax.$                                                                                                   |                                                                            |                                                | 8 |  |
| 3A.          | Evaluate $\int_0^1 x^4 (1-x^2)^{\frac{3}{2}} dx$ .                                                             |                                                                            |                                                | 6 |  |
| 3B.          | Trace the curve $x = a\cos^3 t$ ,                                                                              | $y = a \sin^3 t.$                                                          |                                                | 6 |  |
|              | <b>3C.</b> Test for the convergence $r^2 r^3$                                                                  | or divergence of the following                                             | series                                         | 8 |  |

$$x - \frac{x^2}{2^2} + \frac{x^3}{3^2} - \dots \dots$$

**4A.** Show that the evolute of the cycloid x = a(t - sint), y = a(1 - cost) is **6** another equal cycloid.

| <b>4B.</b>   | Find the equation of the right circular cone generated when the straight line $2y+3z=6$ , $x=0$ revolves about z- axis.                               | 6 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4C.          | Find the equations of the spheres passing through the circle $x^2 + y^2 + z^2 - 6x - 2z + 5 = 0$ , $y = 0$ and touching the plane $3y + 4z + 5 = 0$ . | 8 |
| 5A.          | If $y = (\sin^{-1} x)^2$ , show that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2y_n = 0$ .                                                             | 6 |
| 5B.          | Verify Cauchy's mean value theorem for the functions $\log_e x$ and $\frac{1}{x}$ in the interval [1, <i>e</i> ].                                     | 6 |
| 5C.          | Expand $f(x) = \tan^{-1} x$ in powers of $x - 1$ up to the term containing $x^3$ .                                                                    | 8 |
| 6A.          | P.T. $\log(1 + x) = \frac{x}{1 + \theta x}$ , where $0 < \theta < 1$ and hence deduce that $\frac{x}{1 + x} < \log(1 + x) < x$ ; $x > a$ .            | 6 |
| 6.B          | If $\rho$ is the radius of curvature, then for the curve $r^m = a^m \cos m\theta$ , P.T. $\rho = \frac{a^m}{(m+1)r^{m-1}}$                            | 6 |
| 6.C          | S.T. the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $(ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$                              | 8 |
| 7.A          | Find the equation of the right circular cylinder having for its base the circle $x^2 + y^2 + z^2 = 9$ , $x - y + z = 3$ .                             | 6 |
| <b>7.B</b>   | Find the $n^{th}$ derivative of $e^{3x} \cos x \sin^2 2x$ .                                                                                           | 6 |
| <b>7.</b> C  | Test the series for convergence, $\sum_{n=1}^{\infty} (\sqrt{n^2 + 1} - n)$                                                                           | 8 |
| 8A.          | Calculate the area of the plane region bounded by the graph $y = \sin x$ , x-axis, the y-axis and the vertical line $x = \frac{5\pi}{2}$ .            | 6 |
| 8 <b>B</b> . | Determine the surface area of the solid obtained by rotating $y = \sqrt{9 - x^2}, -2 \le x \le 2$ about the x-axis.                                   | 6 |
| 8C.          | Trace the curve $r = a \sin 2\theta$                                                                                                                  | 8 |

\*\*\*\*\*\*