

INTERNATIONAL CENTRE FOR APPLIED SCIENCES MAHE, MANIPAL B.Sc. (Applied Sciences) in Engg. End – Semester Theory Examinations – MAY 2021 –Repeaters 2018 Batch II SEMESTER - CHEMISTRY (ICH-121) (Branch: Common to all)

Time: 3 Hours	Date: 18 May 2021	Max. Marks: 100
· ·	ll questions from the following s wherever required	
	t of $S_N 1$ and $S_N 2$ reaction of alkyl halides. Exposed of organic compounds with suitable example	
immersed in 10 M solut	entions for electrode potentials? A galvanic tion of $CuSO_4$ and iron plate immersed in 0.5	5 M FeSO ₄ at 298K. If $E^0_{cell} =$
0.78 V, write the cell re	action and calculate E.M.F. of the cell.	(6)
1C. Draw the structure of th i) 1-Penten-4-yne ii) 2	-	
· · · ·) 1-Chloro-2-methylbutane	(4)
2A. Explain the hybridizati	on concept and hybridized structures of BeF	f_2 and CH ₄ . (10)
-	For the degree of dissociation and obtain Ostress of 0.01 M CH ₃ COONa at 25 °C. If the hydr	
CH ₃ COONa at 25 °C is	-	(6)
2C. Differentiate order and	molecularity of a reaction. Give examples.	(4)
3A. Explain the following:		
i) Band theory of meta	-	
ii) Criteria for Resonar	ace and orbital approach to benzene	(10)
3B. Derive the rate constan	t of second order reaction having one reacta	nt. (6)
3C. Explain: Extensive pro	perty and intensive property.	(4)

4A. According to VSEPR theory describe the structures of NH ₃ and H ₂ O molecules. Compare it bond angle with CH ₄ .			
4B. Derive Gibbs-helmholtz equation. Discuss its application and significance.	(6)		
4C. Obtain the expression from the circuit diagram in the Poggendorff's compensation method.	(4)		
5A. Explain types of electrochemical cells its construction and working.	(10)		
5B. For the reaction: $N_2 + 3H_3 \rightleftharpoons 2$ NH ₃ at 500 °C and low pressure, the value of Kp with partial pressure in atmospheres is 1.44 X 10 ⁻⁵ , calculate the value of Kc for this equilibrium with concentration in units of moles per liter. (R in liter atm K ⁻¹ mol ⁻¹ is 0.0820). Discuss the magnitude of equilibrium constant. (6)			
5C. Give reason:			
i) Conductivity of metals decrease at high temperaturesii) Silvery white lustrous surface of metals	(4)		
 6A. Explain the following types of isomerism with a suitable example i) Chain isomerism ii) Position isomerism iii) Functional isomerism iv) Matematican 			
iv) Metamerismv) Tautomerism	(10)		
6B. Discuss energy of activation of a reaction. Explain the Arrhenius method of determination of activation energy of a reaction (6)			
6C. Derive an expression for the electrode potential and pH of glass electrode.	(4)		
 7A. Give reason: a) HF is liquid at lab temperature but HCl is a gas b) Covalent compounds exhibit low chemical reactivity and have low melting and boiling point c) O₂ is paramagnetic d) In a galvanic cell anode is negative and cathode is positive e) Ionic solids are generally brittle 			
	(10)		
7B. Explain the construction and working of calomel and gas electrode.	(6)		

7C. Explain the different factors affecting the rate of a reaction.	
8A. Discuss the factors governing ionic bond formation. Discuss in detail the Born-Haber cycle the formation of NaCl crystal.	
8B. Explain the Le-Chatelier's principle. Apply them to the manufacture of ammonia.	(6)
8C. Discuss the following in secondary bonding with examples and diagrams:i) Dipole-induced dipole interactionii) Induced dipole-induced dipole interaction	(4)
