

TERNATIONAL CENTRE FOR APPLIED SCIENCES MAHE, MANIPAL B.Sc. (Applied Sciences) in Engg. End – Semester Theory Examinations – May 2021 II SEMESTER: LOGIC DESIGN (IEC 121) (BRANCH: E & E)

Time: 3 Hours	Date:22 May 2021	Max. Marks: 50
 ✓ Answer ALL Quest ✓ Missing data, if an 	stions. 1y, may be suitably assume.	
1A . Design a 3-bit binary	y up-down counter.	(5)
1B . Design a Full adder	using 3:8 Decoder.	(5)
2A. Implement the foll multiplexer F(A, B	owing switching functions usin B, C, D) = $\sum m (0, 1, 2, 4, 6, 9, 1)$	g a Four input 10, 13, 14). (5)
2B . Reduce the Boolean condition d (w, x, using gates.	function f (w, x, y,z)= $\sum m (0,1, y, z) = \sum m (2,11)$ using k-map	4,8,9,10) with don't cares technique and implement (5)
3A . Perform 2's complet	nent subtraction of 010110-1001	101 (2.5)
3B . Convert (53) ₁₀ to EX	X-3 code.	(2.5)
3C . Why digital circuits	are more frequently constructed	with NAND or NOR
gates than with AN	ND & OR gates? Explain.	(2.5)
3D . Convert 110011 into	hexadecimal through octal.	(2.5)
4A . Design a sequence g required steps. Assur	enerator for the following seque me overlapping is allowed.	nce "1011". Show all the (5)
4B. Construct and explai	n a Ring counter for five timing	signals. (5)
5A . Design 16:1 MUX u	sing only 2:1 MUX .	(5)
5B. Explain with logic diregister.	iagram the operation of 4-bit SII	PO unidirectional shift (5)
