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 Answer any five Questions 

 Missing data, if any, may be suitably assumed  

1A If )tantanlog(tan zyxu   then show that 22sin2sin2sin 
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1C 
Using the transformation vyxuyx  ,   Evaluate dxdy
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2A If ,12222  xyzzyxu  Show that 0
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2B 
The focal length of mirror is found from the formula 

uvf

112
  find the percentage 

error in f if u and v are both in error by 2% each. 
(6) 

2C Find extreme values of .12)(6333 xyyxyxu   (7) 
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3B 
Evaluate 
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 over the region bounded by the triangle with vertices (0, 0), (2, 

1),  (0, 1). 
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3C 
Evaluate  
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4A Evaluate by changing the order of integration  
 

0

sin

x

dydx
y

y
 (7) 

4B Find the area common to the cardioids )cos1(  ar  and )cos1(  ar  (6) 
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4C 

Find the volume of the cylinder axyx 222   intercepted between the 

Paraboloid 
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5A Find the value of Gamma 
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6A 
Find the directional derivative of the function 222 zxyzxy   along the tangent 

to the curve 32 ,, tztytx   at the point (1, 1, 1). 
(6) 

6B 
Find the angle between the normals to the surface 2zxy    at P(1,1,1) and Q(4,1,2) 
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6C 

Determine the  constants a and b such that  curl of 

kbyzxyjzaxzxiyzxy ˆ)23(ˆ)4(ˆ)32( 22   s zero 
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7A 

Find the values of constants λ and μ so that the surface λx2 − μyz = (λ + 2)x will 

be orthogonal to the surface 4x2y + z3 = 4 at the point (1, −1,2). 
 

(6) 

7B 
If  𝐹⃗ = 𝑡2𝑖̂ − 𝑡𝑗̂ + (2𝑡 + 1)𝑘̂ and  𝐺⃗ = (2𝑡 − 3)𝑖̂ + 𝑗̂ − 𝑡𝑘̂, then find 

𝑑

𝑑𝑡
(𝐹⃗ ×

𝑑 𝐺⃗

𝑑𝑡
) 

at 𝑡 = 2. 

 

(7) 

7C 
Verify Stokes’ theorem for A⃗⃗⃗ = yî + zĵ + xk̂  and 𝑆 is the surface of  

𝑥2+𝑦2+𝑧2=𝑎2 lying above the xy- plane and n̂ is the unit normal to surface. 

 

(7) 

   

8A 
Find the rank of the matrix 𝐴 = [

1 3 4 3
3 9 12 3
1 3 4 1

] by reducing to row-echelon form. 

 

(6) 

8B 

Test for consistency of the following equations and if possible, find the solutions 

by Gauss elimination method: 

𝑥1 + 2𝑥2 − 2𝑥3 = −6,−2𝑥1 − 4𝑥2 + 5𝑥3 = 17, 𝑥1 + 2𝑥2 − 𝑥3 = −1   
 

(7) 

8C 
Using Gram-Schmidt’s process construct an  an orthonormal basis from the set of 

vectors of  321 ,, aaa  in R 3   where )11,9,2(),7,0,1(),4,0,3( 321  aaa . 
(7) 
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