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INTERNATIONAL CENTRE FOR APPLIED SCIENCES  

MAHE, MANIPAL 

B.Sc. (Applied Sciences) in Engg.  

End – Semester Theory Examinations – MAY 2021 

II SEMESTER - MATHEMATICS - II (IMA 121) 

(Branch: Common to all) 
 

Time: 3 Hours                                  Date: 11.05.2021                               Max. Marks: 50 

 Answer ALL the questions. 

 Missing data, if any, may be suitably assumed 

   

 

1A 

 

If vex u tan , vey u sec   and )(2 vfez u  prove that 02 
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(3) 

1B In estimating the cost of pile of bricks measured ,2.1152 mmm   the top of the pile s 

stretched 1% beyond the standard length. If the count is 450 bricks in 1 cubic m and bricks 

cost Rs. 450 per thousand, find the approximate error in the cost. 

(3) 

 

1C 

 

Find the extreme values of 7333 2223  yxxyxu . If any 

(4) 

   

2A 
Evaluate dxdy
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(3) 

2B 
Evaluate dxdy

yx

yx
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  over the region bounded by the circles 222 ayx   and 

)(222 babyx    

(3) 

 

2C 

 

Find the area inside the cardioid )cos1(3 r  and outside the parabola 
cos1
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
r  

(4) 

   

3A Examine whether the vector field  𝐹⃗(x, y, z) = (2xy + z3)î + x2ĵ + 3xz2k̂ is solenoidal 

or irrotational. Find a scalar function ϕ such that  ∇ϕ = 𝐹⃗ . 

 

(3) 

3B Find the unit normal at any arbitrary point (𝑥, 𝑦, 𝑧) to the unit sphere having centre at 

origin. Also find the curl of that unit normal. 

 

(3) 
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3C 

 

 

 

 

Evaluate ∫ 𝐹⃗ ∙ 𝑛̂
𝑆

𝑑𝑆, where 𝐹⃗ = 18𝑧𝑖̂ − 12𝑗̂ + 3𝑦𝑘̂ and 𝑆 is the part of the plane 2𝑥 +

3𝑦 + 6𝑧 = 12 located in the first octant. 

 

(4) 

4A 
Find the rank of the matrix 𝐴 = [

3 0 2 2
−6 42 24 54
21 −21 0 −15

] by reducing to row-echelon 

form. 

 

(3) 

4B Using the Gauss-Jordan method, find the inverse of the matrix 

 𝐴 = [
1 −1 −2
2 −3 −5
−1 3 5

] 

 

(3) 

4C Test for consistency of the following equations and if possible, find the solutions by 

Gauss elimination method: 

𝑥1 − 𝑥2 + 𝑥3 = 0,−2𝑥1 + 2𝑥2 − 𝑥3 = 0, 3𝑥2 + 2𝑥3 = 4   
 

(4) 

5A 
Prove that 
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(3) 

5B If  𝑟(𝑡) = (𝑎 cos 𝑡)𝑖̂ + (𝑎 sin 𝑡)𝑗̂ + (𝑎𝑡 tan 𝛼)𝑘̂  where 𝑎 and 𝛼 are constants, then find 

|
𝑑𝑟

𝑑𝑡
×

𝑑2𝑟

𝑑𝑡2
| . 

 

(3) 

5C Let  321 ,, aaas   be a basis for R 3   where ),3,2,1(),1,0,1(),1,1,1( 321  aaa Use 

Gram-Schmidt’s process to transform S to an orthonormal basis of R 3   . 

(4) 
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